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Chapter 1

Vibrations

Vibrations are periodic processes, that is, processes that repeat themselves after a
given time interval. After a time called period, the system under consideration re-
turns to the same state in which it was initially. There innumerable examples for
periodic processes, such as the motion of a seesaw, oceanic tides, electronic L − C
circuits, alternating current or rotations like that of the Earth around the Sun. Thus,
vibrations are among the most fundamental processes in all domains of physics. A
lecture version of this chapter can be found at (watch talk).

1.1 Free periodic motion

A movement is considered as free, when apart from a restoring force, that is a force
working to counteract the displacement, there are no other forces accelerating or
slowing down the motion.

1.1.1 Clocks

Periodic motions are used to measure time. Assuming a given process to be truly
periodic, we can inversely postulate that the time interval within which this process
occurs is constant. This interval is used to define a unit of time. For example, the
’day’ is defined as the interval that the Earth needs to complete a rotation about
its axis. The ’second’ is defined as the 86400-th fraction of this period. Taking the
second inversely as the base unit, we can define the day as the time interval needed
for a periodic process taking 1 s to occur 86400 times. That is, we count the number
of times ν that this process occurs within a day and calculate the duration of a day
through,

∆T =
1

ν
. (1.1)

In real life, vibrations are subject to perturbations, just like all physical processes.
These perturbations may afflict the periodicity and falsify the measurement of time.
For example, the oceanic tides, which depend on the rotation of the moon around the
Earth, can influence the Earth’s own rotation. One of the challenges of metrology,
which is the science dealing with issues related to the measurement of time, is to
identify processes in nature that are likely to be insensitive to external perturbations.
Nowadays, the most stable known periodic processes are vibrations of electrons within
atoms. Therefore, the international time is defined by an atomic clock based on

3
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cesium: The ’official’ second is the time interval in which the state of an electron
oscillates 9192631770 times when the hyperfine structure of a cesium atom is excited
by a microwave.

The unit of time is,
unit(T ) = s . (1.2)

A frequency is defined as the number of processes that occur within one second. We
use the unit,

unit(ν) = Hz . (1.3)

Often, to simplify mathematical formulas, we will use the derived quantity of the
angular frequency also called angular velocity,

ω ≡ 2πν . (1.4)

It has the unit,
unit(ω) = rad/s ̸= Hz . (1.5)

It is important not to use the unit ’Hertz’ for angular frequencies in order to avoid
confusion.

1.1.2 Periodic trajectories

Many periodic processes are based on repetitive trajectories of particles or bodies. As
an example, let us the movement of a body in a box shown in Fig. 1.1. When the
body encounters a wall, it is elastically reflected thereby maintaining its velocity but
reversing the direction of propagation. Clearly, the velocity is the derivative of the
position,

v(t) = ẋ(t) . (1.6)

Figure 1.1: Trajectory of a body in a rectangular box. Upper trace: instantaneous position.
Lower trace: instantaneous velocity.

To fully describe the trajectory of a body and to identify, when the trajectory
repeats, two parameters are needed. Specifying, for example, the time evolution of
position x(t) and velocity v(t), we can search for time intervals T after which,

x(t0 + T ) = x(t0) and v(t0 + T ) = v(t0) . (1.7)

Obviously, as seen in Fig. 1.1, it is not enough just to look for the time when x(t0 +
T ) = x(t0).
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1.1.3 Simple harmonic motion

The simplest motion imaginable is the harmonic oscillation described by,

x(t) = A cos(ω0t− ϕ) , (1.8)

and exhibit in Fig. 1.2. A is the amplitude of the motion, such that 2A is the distance
between the two turning points. T = 2π/ω0 is the oscillation period, since,

cos[ω0(t+ T )− ϕ] = cos[ω0t+ 2π − ϕ] = cos[ω0t− ϕ] . (1.9)

ϕ is a phase shift describing the time delay t = ϕ/ω0 for the oscillation to reach the
turning point.

Figure 1.2: Illustration of the cosenus function with the amplitude A, the period T and the
phase being negative for this graph ϕ < 0.

The velocity and acceleration follow from,

v(t) = ẋ(t) = −ω0A sin(ω0t− ϕ) and a(t) = v̇(t) = −ω2
0A cos(ω0t− ϕ) . (1.10)

with this we can, using Newton’s law, calculate the force necessary to sustain the
oscillation of the body,

F (t) = ma(t) = −mω2
0A cos(ω0t− ϕ) = −mω2

0x(t) ≡ kx(t) . (1.11)

That is, in the presence of a force, which is proportional to the displacement but
with the opposite direction, F ∝ −x, we expect a sinusoidal solution. The propor-
tionality constant k is called spring constant. Obviously the oscillation frequency is
independent of amplitude and phase,

ω0 =
√
k/m . (1.12)

Solve Exc. 1.1.10.1.

Example 1 (Harmonic vibration):

• Suspended spring-mass system, pendulums with various masses and lengths
of wire, oscilloscope and function generator, water recipient with a floating
body.
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1.1.4 The spring-mass system

Let us now discuss a possible experimental realization of a sinusoidal vibration.
Fig. 1.3 illustrates the spring-mass system consisting of a mass horizontally fixed
to a spring. This system has a resting position, which we can set to the point x = 0,
where no forces act on the mass. When elongated or compressed, the spring exerts a
restoring force on the mass working to bring the mass back into its resting position,

Frestore = −kx . (1.13)

This so-called Hooke’s law holds for reasonably small elongations. The spring coeffi-
cient k is a characteristic of the spring.

Figure 1.3: Illustration of the spring-mass system.

The oscillation frequency of the spring-mass system is determined by the spring
coefficient and the mass, but the phase and the amplitude of the oscillation are pa-
rameters, that depend on the way the spring-mass is excited. Knowing the position
and velocity of the oscillation at a given time, that is, the initial conditions of the mo-
tion, we can determine the amplitude and phase. To see this, we expand the general
formula for a sinusoidal oscillation,

x(t) = A cos(ω0t− ϕ) = A cos(ω0t) cosϕ+A sin(ω0t) sinϕ (1.14)

and calculate the derivative,

v(t) = −Aω0 cosϕ sin(ω0t) +Aω0 sinϕ cos(ω0t) . (1.15)

With the initial conditions x(0) = x0 and v(0) = v0 we get,

A cosϕ = x0 and Aω0 sinϕ = v0 . (1.16)

Hence,

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t) . (1.17)

Solve the Excs. 1.1.10.2, 1.1.10.3, 1.1.10.4, and 1.1.10.5.

1.1.5 Energy conservation

Considerations of energy conservation can often help solving mechanical problems.
The kinetic energy due to the movement of the mass m is,

Ekin = m
2 v

2 , (1.18)

and the potential energy due to the restoring force is,

Epot = −
∫ x

0

Fdx′ = −
∫ x

0

−kx′dx′ = k
2x

2 . (1.19)
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The total energy must be conserved:

E = Ekin + Epot =
m
2 v

2 + k
2x

2 = const , (1.20)

but is continuously transformed between kinetic energy and potential energy. This is
illustrated on the left-hand side of the Fig. 1.4.

Figure 1.4: (Left) Energy conservation in the spring-mass system showing the kinetic energy
K, the potential energy V , and the total energy E. (Right) Probability density of finding
the oscillator in position x.

Example 2 (Probability distribution in the harmonic oscillator): Let
us now use the principle of energy conservation to calculate the probability of
finding the oscillating mass next to a given displacement x. For this, we solve
the last equation by the velocity,

v =
dx

dt
=

√
2

m
E − k

m
x2 = ω0

√
2E

mω2
0

− x2 , (1.21)

or
dx√

2E
mω2

0
− x2

= ω0dt . (1.22)

The probability of finding the mass within a given time interval dt is,

p(t)dt =
dt

T
=
ω0

2π
dt =

dx

2π
√

2E
mω2

0
− x2

= p̃(x)dx . (1.23)

Hence,

p̃(x) =
1

2π
√

2E
mω2

0
− x2

(1.24)

is the probability density of finding in the mass at the position x(t). Using∫
dx√

a2−x2
= arcsin x

a
with x0 =

√
2E
mω2

0
we verify,

2

∫ x0

−x0

p̃(x)dx =
1

π

arcsin x√
2E
mω2

0

x0

−x0

=
2

π
arcsin

x0√
2E
mω2

0

=
2

π
arcsin 1 = 1 .

(1.25)

The probability density is shown on the right side of Fig. 1.4 1.
1To understand the difference between the probability densities p(t) and p̃(x) we imagine the

following experiments: We divide the period T into equal intervals dt and take a series of photos,
all with the same exposure time dt. To understand the meaning of p(t), we throw a random number
to choose one of the photos. Each photo has the same probability dt/T to be chosen and, of course,∫ T
0 p(t)dt = 1. To understand the meaning of p̃(x), we identify the position of the oscillator in each

photo and plot it in a histogram. This histogram is reproduced by p̃(x).
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1.1.6 The spring-mass system with gravity

When a mass is suspended vertically to a spring, as shown on the left-hand side of
Fig. 1.5, the gravitational force acts on the mass in addition to the restoring force.
This can be expressed by the following balance of forces,

ma = −ky −mg , (1.26)

letting the y-axis be positive in the direction opposite to gravitation. Replacing
ỹ′ ≡ y − y0 with y0 ≡ −mg

k , we obtain,

mã = −kỹ . (1.27)

Therefore, the movement is the same as in the absence of gravitation, but around an
equilibrium point shifted downward by y0.

Figure 1.5: Left: Vertical spring-mass system. Right: Conservation of energy in the spring-
mass system with gravity.

Energy conservation is now generalized to,

E = Ekin + Emol + Egrv = m
2 v

2 + k
2y

2 +mgy = const , (1.28)

the potential energy being,

Epot = Emol + Egrv = k
2y

2 +mgy (1.29)

= k
2 (y − y0)

2 + k
22y0y −

k
2y

2
0 +mgy = k

2 (y − y0)
2 − m2g2

2k
.

The right-hand side of Fig. 1.5 illustrates the conservation of energy in the spring-mass
system with gravity. See Excs. 1.1.10.6, 1.1.10.7, 1.1.10.8, and 1.1.10.9.

1.1.7 The pendulum

The pendulum is another system which oscillates in the gravitational field. In the
following, we will distinguish three different types of pendulums. In the ideal pendulum
the mass of the oscillating body is all concentrated in one point and the oscillations
have small amplitudes. In the physical pendulum the mass of the body is distributed
over a finite spatial region. And mathematical pendulum is a point mass oscillating
with a large amplitude and therefore subject to a nonlinear restoring force.
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Figure 1.6: Physical pendulum.

1.1.7.1 The ideal pendulum

The ideal pendulum is schematized on the left side of Fig. 1.6. As the centrifugal force
is compensated for by the traction of the wire supporting the mass, the acceleration
force ma is solely due to the perpendicular projection −mg sin θ on the wire. For
small amplitudes, sin θ ≃ θ, such that 2,

ma ≃ −mgθ . (1.30)

The tangential acceleration is now,

a = v̇ = s̈ =
d

dt
θL = Lθ̈ . (1.31)

Thus,

θ̈ +
g

L
θ ≃ 0 . (1.32)

This equation has the same structure as that of the already studied spring-mass
system ẍ + k

mx = 0. Therefore, we can deduce that the ideal pendulum oscillates
with the frequency,

ω0 =

√
g

L
, (1.33)

only that the oscillating degree of freedom is an angle rather than a spatial shift. It
is interesting to note that the oscillation frequency is independent of the mass. See
Exc. 1.1.10.10.

1.1.7.2 The physical pendulum

We consider an irregular body suspended at a point P as schematized on the right-
hand side of Fig. 1.6. The center-of-mass be displaced from the suspension point by
a distance D. This system represents the physical pendulum. Gravitation exerts a
torque τ⃗ on the center-of-mass,

τ⃗ = D×mg with τ = Iθ̈ , (1.34)

where I is the moment of inertia of the body for rotations about the suspension axis.
Like this,

Iθ̈ = −Dmg sin θ . (1.35)

2The equation of motion can be derived from the Hamiltonian H =
L2

θ
2ml2

+ mgl cos θ using

θ̇ = ∂H/∂  Lθ and L̇θ = −∂H/∂θ, where Lθ is the angular momentum.
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Considering once more small angles, sin θ ≃ θ, we obtain,

θ̈ + ω2
0θ ≃ 0 with ω0 ≡

√
Dmg

I
. (1.36)

It is worth mentioning that the inertial moment of a body whose mass is concentrated
in a point at a distance D from the suspension point follows Steiner’s law,

I = mD2 . (1.37)

With this we recover the expression of the ideal pendulum,

ω0 =

√
Dmg

mD2
=

√
g

D
. (1.38)

1.1.7.3 The mathematical pendulum

The equation describing the mathematical pendulum (see Fig. 1.6) has already been
derived but, differently from what we did before, here we will not apply the small
angle approximation,

θ̈ = − g

L
sin θ = −ω2

0 sin θ . (1.39)

Energy conservation can be formulated as follows:

0 =
dE

dt
=

d

dt
(Erot + Epot) =

d

dt

I

2
θ̇2 +

d

dt
mgL(1− cos θ) (1.40)

=
I

2
2θ̇θ̈ +mgLθ̇ sin θ ≃ θ̇(Iθ̈ +mgLθ) .

Thus, we obtain the same differential equation,

θ̈ +
mgL

I
θ = 0 . (1.41)

Example 3 (Simulation of an anharmonic pendulum): When the an-
harmonicity is not negligible, it is impossible to solve the differential equation
analytically. We must resort to numerical simulations. The simplest procedure
is an iteration of the type,

θ(t+ dt) = θ(t) + dtθ̇ = θ(t) + dtω

ω(t+ dt) = ω(t) + dtω̇ = ω(t)− dtω0 sin θ .

Fig. 1.7(a) shows the temporal dephasing of the oscillation caused by the anhar-

monicity as compared to the harmonic oscillation. Fig. 1.7(b) shows the orbits

θ(t) 7−→ ω(t) in the phase space.

1.1.8 The spring-cylinder system

Another example of an oscillating system is shown in Fig. 1.8. The inertial moment
of the cylinder is I = M

2 R
2. The spring exerts the force,

Fmol = −kx . (1.42)
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0 5

ω0t/2π
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x
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v
/ω

0
A

Figure 1.7: (code) Diffusion due to anharmonicities (a) in time and (b) in phase space. The

red curves show the harmonic approximation.

Therefore, we have the equations of motion,

Mẍ = Fmol − Fat (1.43)

Iθ̈ = −RFat .

If the wheel does not slip, we can eliminate the friction using x = Rω, and we obtain,

Iθ̈ = I
ẍ

R
=
M

2
R2 ẍ

R
= −RFat = −R(−kx−Mẍ) . (1.44)

Resolving by ẍ,

ẍ+
2k

3M
x = 0 . (1.45)

The frequency is,

ω0 =

√
2k

3M
. (1.46)

Figure 1.8: The spring-cylinder system.

1.1.9 Two-body oscillation

We now consider the oscillations of two bodies m1 and m2 located at the positions x1
and x2 and interconnected by a spring k, as shown in Fig. 1.9. The free length, that
is, the distance at which the spring exerts no forces on the masses, is ℓ. The forces
grow with the stretch x ≡ x2 − x1 − ℓ of the spring, such that x > 0 when the spring
is stretched and x < 0 when it is compressed. Thereby,

m1ẍ1 = kx and m2ẍ2 = −kx . (1.47)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OscilacaoAnharmonica.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OscilacaoAnharmonica.m
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Figure 1.9: Two bodies in relative vibration.

Adding these equations,

m1ẍ1 +m2ẍ2 ≡ (m1 +m2)ẍcm = 0 . (1.48)

Dividing the equations by the masses and subtracting them,

ẍ1 − ẍ2 = −k
(

1

m1
+

1

m2

)
x = ẍrel = −k

µ
x = ω0x , (1.49)

where ω2
0 = k/µ and µ−1 ≡ m−1

1 +m−1
2 is called the reduced mass. The introduction

of the reduced mass turns the oscillator consisting of two bodies equivalent to a system
consisting of only one mass and one spring, but with an increased vibration frequency,

ωµ =

√
k

µ
=

√
2
k

m
. (1.50)

This system represents an important model for the description of molecular vibration.
Note that for m1 −→ ∞ we restore the known situation of a spring-mass system fixed
to a wall.

1.1.10 Exercises

1.1.10.1 Ex: Zenith in São Carlos

Knowing that the latitude of the Sun in the tropics of Capricorn is αtrop = 23◦

calculate at what time of the year the sun is vertical at noon in São Carlos, SP,
Brazil.

1.1.10.2 Ex: Swing modes

In the systems shown in the figure there is no friction between the surfaces of the
bodies and floor, and the springs have negligible mass. Find the natural oscillation
frequencies.

1.1.10.3 Ex: Coupled springs

Amassm is suspended within a horizontal ring of radiusR = 1m by three springs with
the constants D1 = 0.1 kg/m, D2 = 0.2N/m, and D3 = 0.3N/m. The suspension
points of the springs on the ring have the same mutual distances. Determine the
equilibrium position of the mass assuming that the springs’ extensions at rest range
is 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ZeniteSaocarlos.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ModosOscilacao.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas1.pdf
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Exercícios  

1 -  Nos sistemas mostrados na Fig. 9.14 não há atrito entre as superfícies do 

corpo e do chão e as molas têm massa desprezíveis. Encontre as 

freqüências naturais de oscilação. 

 

 

 

 

   (a)                    (b)                             (c) 

Fig. 9.14 

2 -  Composição de movimentos (Figuras de Lissajous) -   Consideremos um 

corpo sujeito a dois movimentos harmônicos em direções ortogonais: 

( ) ( )xxx tcosAtx ϕ+ω=  

( ) ( )
yyy tcosAty ϕ+ω=  

a) Quando yx /ωω é um número racional, a curva é fechada e o 

movimento repete-se em tempos iguais. Determine a curva traçada pelo 

corpo para ωx/ωy = 1/2, 1/3 e 2/3, tomando yxyx   e  AA ϕ=ϕ= . 

b) Para ωx/ωy = 1/2, 1/3 e ,AA yx =  desenhe as figuras para yx ϕ−ϕ  = 

0, π/4 e π/2. 

3 -  Considere um cilindro preso por duas molas que roda sem deslizar como 

mostra a Fig. 9.15. Calcule a freqüência para pequenas oscilações do 

sistema. 

4 -  Considere um pêndulo simples de massa m e comprimento L, conectado a 

uma mola de contraste k, conforme mostra a Fig. 9.16. Calcule a 

freqüência do sistema para pequenas oscilações. 

 

 

M 
k1 k2 

M 

k1 

k2 

M 
k1 k2 

Figure 1.10: Swing modes.

Figure 1.11: Coupled springs.

1.1.10.4 Ex: Coupled springs

A mass m is suspended by four springs with the constants kn, as shown in the figure.
Determine the equilibrium position of the mass. Assume the ideal case of ideally
compressible springs.

Figure 1.12: Coupled springs.

1.1.10.5 Ex: Coupled springs

Calculate the resulting spring constants for the constructions shown in the scheme.
Individual springs are arbitrarily compressible with spring constants Dk.

1.1.10.6 Ex: Spring-mass system

A body of unknown mass hangs at the end of a spring, which is neither stretched
nor compressed, and is released from rest at a certain moment. The body drops a
distance y1 until it rests for the first time after the release. Calculate the period of
oscillatory motion.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MassaMola1.pdf
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Figure 1.13: Coupled springs.

1.1.10.7 Ex: Spring-mass system

A body of m = 1.5 kg stretches a spring by y0 = 2.8 cm from its natural length when
being at rest. Now, we let it swing at this spring with an amplitude of ym = 2.2 cm.
a. Calculate total energy of the system.
b. Calculate the gravitational potential energy at the body’s lower turning point.
c. Calculate the potential energy of the spring at the body’s lower turning point.
d. What is the maximum kinetic energy of the body (when U = 0 is the point where
the spring is at equilibrium).

1.1.10.8 Ex: U-shaped water tube

Consider a U-shaped tube filled with water. The total length of the water column is
L. Exerting pressure on one tube outlet the column is incited to perform oscillations.
Calculate the period of the oscillation.

Figure 1.14: U-shaped water tube.

1.1.10.9 Ex: Buoy in the sea

A hollow cylindrical buoy with cross-sectional area A and mass M floats in the sea
so that the axis of symmetry is aligned with gravitation. An albatross of mass m

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MassaMola2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_TuboDobrado.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_BoiaMar.pdf
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sitting on the buoy waits until time t = 0 and takes off. With which frequency and
amplitude does the buoy oscillate if friction can be neglected? Derive the equation of
motion and the complete solution.

Figure 1.15: Fluctuating buoy.

1.1.10.10 Ex: Complicated pendulum oscillation

At a distance of d = 30 cm below the suspension point of a pendulum with the
length l1 = 50 cm there is a fixed pin S on which the wire suspending the pendulum
temporarily bends during vibration. How many vibrations does the pendulum perform
per minute?

Figure 1.16: Mathematical pendulum.

1.1.10.11 Ex: Physical pendulum

Calculate the oscillation frequency of a thin bar of mass m and length L suspended
at one end.

1.1.10.12 Ex: Physical pendulum

An irregularly shaped flat body has the mass m = 3.2 kg and is hung on a massless
rod with adjustable length, which is free to swing in the plane of the body itself.
When the rod’s length is L1 = 1.0m, the period of the pendulum is t1 = 2.6 s. When
the rod is shortened to L2 = 0.8m, the period decreases to t2 = 2.5 s. What is the
period of the oscillation when the length is L3 = 0.5m?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PenduloComplicado.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum02.pdf
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1.1.10.13 Ex: Physical pendulum

A physical pendulum of massM consists of a homogeneous cube with the edge length
d. As shown in the figure, the pendulum is hung without friction on a horizontal
rotation axis.
a. Determine the inertial momentum about the rotation axis using Steiner’s theorem.
b. The pendulum now performs small oscillations around its resting position. Deter-
mine the angular momentum.
c. Give the equation of motion for small pendulum amplitudes ϕ around its resting
position and the oscillation period.

Figure 1.17: Physical pendulum.

1.1.10.14 Ex: Physical pendulum on a spiral spring

Consider a beam of mass m = 1kg with the dimensions (a, b, c) = (3 cm, 3 cm, 8 cm).
The beam is rotatable about an axis through the point A. At point B, at a distance
r from point A, the beam is fixed to a spiral spring exerting the retroactive force
FR = Dϕ⃗ with D = 100N/m. Determine the differential equation of motion and
solve it. Determine the period of the oscillation.

Figure 1.18: Physical pendulum on a spiral spring.

1.1.10.15 Ex: Accelerated pendulum

A simple pendulum of length L is attached to a cart that slides without friction
downward an plane inclined by an angle α with respect to the horizontal. Determine
the oscillation period of the pendulum on the cart.

1.1.10.16 Ex: Accelerated pendulum

a. A pendulum of length L and mass M is suspended from the roof of a wagon
horizontally accelerated with the acceleration aext. Find the equilibrium position of
the pendulum. Determine the oscillation frequency for small oscillations and derive

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_AcceleratedPendulum01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_AcceleratedPendulum02.pdf
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the differential equation of motion for an observer sitting in the wagon. (Note that
you cannot assume small displacements, if the acceleration aext is large.)
b. In the same wagon there is a mass m connected to the front wall by a spring k.
Find the equilibrium position of the mass. Determine the oscillation frequency and
derive the differential motion equation for an observer sitting in the wagon.

Figure 1.19: Accelerated pendulum.

1.1.10.17 Ex: Oscillation of a rolling cylinder

Consider a cylinder secured by two springs that rotates without sliding, as shown in
the figure. Calculate the frequency for small oscillations of the system.
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Fig. 9.15     Fig. 9.16 

5 -  Dois movimentos harmônicos de mesma amplitude mas freqüências 

ligeiramente diferentes são impostos a um mesmo corpo tal que 

( )[ ]tcosA)t(x  e  tcosA)t(x 21 ω∆+ω=ω= . Calcule o movimento 

vibracional resultante. 

6 -  Considere um pêndulo simples num meio viscoso com constante de força 

viscosa b. Calcule o novo período de oscilação de pêndulo.  

7 -  Considere uma barra delgada de massa M e comprimento 2L apoiada no 

centro de massa como mostra a Fig. 9.17. Ela é presa nas duas 

extremidades por molas de constante k. Calcule a freqüência angular para 

pequenas oscilações do sistema. 

8 -  Considere 2 pêndulos (comprimento L e massa M) acoplados por uma 

mola de constante k, conforme mostra a Fig. 9.18. 

a) Encontre as equações diferenciais para os ângulos θ1 e θ 2. 

b) Defina as coordenadas normais de vibração ℵ = θ 1 - θ 2 e β = θ 1 + θ 2. 

Encontre as equações diferenciais para ℵ e β. Dica: some ou subtraia 

as equações de a) 

c) Quais são as freqüências angulares dos modos normais de vibração? 

 

 

 

 

 

M 

k k 

R 
a 

a 

L 

M 

θ 

Figure 1.20: Rolling cylinder.

1.1.10.18 Ex: Rocking chair

Consider a thin rod of mass M and length 2L leaning on its center-of-mass, as shown
in the figure. It is attached at both ends by springs of constants k. Calculate the
angular frequency for small oscillations of the system.
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Fig. 9.17     Fig. 9.18 

9 -  Considere um disco de massa M e raio R ( )2
2
1 MRI =  que pode rodar em 

torno do eixo polar. Um corpo de massa m está pendurado em uma corda 

ideal, que passa pelo disco (sem deslizar) e é presa a uma parede através 

de uma mola de constante k, como mostra a Fig. 9.19. Calcule a 

freqüência natural do sistema. 

 

 

 

 

 

 

 

 

Fig. 9.19 
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θ1 
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θ2 
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m 

k 

Figure 1.21: Rocking chair.

1.1.10.19 Ex: Rotational oscillation of a disk

Consider a disk of mass M and radius R (I = 1
2MR2) that can rotate around the

polar axis. A body of mass mhangs at an ideal rope that runs through the disk
(without slipping) and is attached to a wall by a spring of constant k, as shown in
the figure. Calculate the natural oscillation frequency of the system.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation03.pdf
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Fig. 9.17     Fig. 9.18 

9 -  Considere um disco de massa M e raio R ( )2
2
1 MRI =  que pode rodar em 

torno do eixo polar. Um corpo de massa m está pendurado em uma corda 

ideal, que passa pelo disco (sem deslizar) e é presa a uma parede através 

de uma mola de constante k, como mostra a Fig. 9.19. Calcule a 

freqüência natural do sistema. 

 

 

 

 

 

 

 

 

Fig. 9.19 
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Figure 1.22: Rotational oscillation of a disk.

1.1.10.20 Ex: Oscillation of a half cylinder

Consider a massive, homogeneous half-cylinder of mass M and radius R resting on
a horizontal surface. If one side of this solid is slightly pushed down and released, it
will swing around its equilibrium position. Determine the period of this oscillation.

Figure 1.23: Oscillation of a half cylinder.

1.1.10.21 Ex: Pendulum coupled to a spring

Consider a simple pendulum of massm and length L, connected to a spring of constant
k, as shown in the figure. Calculate the frequency of the system for small oscillation
amplitudes.
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Fig. 9.15     Fig. 9.16 

5 -  Dois movimentos harmônicos de mesma amplitude mas freqüências 

ligeiramente diferentes são impostos a um mesmo corpo tal que 

( )[ ]tcosA)t(x  e  tcosA)t(x 21 ω∆+ω=ω= . Calcule o movimento 

vibracional resultante. 

6 -  Considere um pêndulo simples num meio viscoso com constante de força 

viscosa b. Calcule o novo período de oscilação de pêndulo.  

7 -  Considere uma barra delgada de massa M e comprimento 2L apoiada no 

centro de massa como mostra a Fig. 9.17. Ela é presa nas duas 

extremidades por molas de constante k. Calcule a freqüência angular para 

pequenas oscilações do sistema. 

8 -  Considere 2 pêndulos (comprimento L e massa M) acoplados por uma 

mola de constante k, conforme mostra a Fig. 9.18. 

a) Encontre as equações diferenciais para os ângulos θ1 e θ 2. 

b) Defina as coordenadas normais de vibração ℵ = θ 1 - θ 2 e β = θ 1 + θ 2. 

Encontre as equações diferenciais para ℵ e β. Dica: some ou subtraia 

as equações de a) 

c) Quais são as freqüências angulares dos modos normais de vibração? 
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Figure 1.24: Pendulum coupled to a spring.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_CoupledPendulum01.pdf
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1.1.10.22 Ex: Pendulum carousel

A mass m is hung by a rope of length l on a carousel with the radius R. The
pendulum performs small amplitude oscillations in the direction of the rotation axis
of the carousel. How does the period of oscillation depend on the rotation speed of
the carousel?

1.2 Superposition of periodic movements

Several movements that we already know can be understood as superpositions of pe-
riodic movements in different directions and, possibly, with different phases. Example
are the circular or elliptical motion of a planet around the sun or the Lissajous figures.
In these cases, the motion must be described by vectors, r(t) ≡ (x(t), y(t)). It is also
possible to imagine superpositions of periodic movements in the same degree of free-
dom. The movement of the membrane of a loudspeaker or musical instruments usually
vibrates harmonically, but follows a superposition of harmonic oscillations. According
to the superposition principle, we will take the resultant of several harmonic vibrations
as the sum of the individual vibrations.

Figure 1.25: Superposition of vibrations in different (left) and equal (right) degrees of free-
dom.

1.2.1 Rotations and complex notation

We now consider a uniform circular motion. The radius of the circle being R, the
motion is completely described by the angle θ(t) which grows uniformly,

θ = ωt+ α . (1.51)

The projections of the movement in x and y are,

x(t) = A cos θ and y(t) = A sin θ . (1.52)

Thus, we can affirm x(t) = y(t + π/2), that is, the projections have a mutual phase
shift of π/2.

The circular motion can be represented in the complex plane using the imaginary
unit i ≡

√
−1 and Euler’s relationship eıθ = cos θ+ı sin θ, as illustrated in Fig. 1.26.3,4

With r = Aeıθ we obtain x = ARe eıθ and ıy = AIm eıθ and r = x+ ıy.
We will use the complex notation extensively, as it greatly facilitates the calcula-

tion.

3The Euler relation can easily be derived by Taylor expansion.
4To check your notions on complex numbers do the exercises in Chp. 1 of the Book of A.P. French.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation05.pdf
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Figure 1.26: Circular motion in the complex plane.

1.2.2 Lissajous figures

Other periodic movements in the two-dimensional plane are possible, when the move-
ments in x and y have different phases or frequencies. These are called Lissajous
figures.

We consider a body subject to two harmonic movements in orthogonal directions:

x(t) = Ax cos(ωxt+ φx) and y(t) = Ay cos(ωyt+ φy) . (1.53)

When ωx/ωy is a rational number, the curve is closed and the motion repeats after
equal time periods. The upper charts in Fig. 1.27 show trajectories of the body for
ωx/ωy = 1/2, 1/3, and 2/3, letting Ax = Ay and φx = φy. The lower charts in
Fig. 1.27 show trajectories for ωx/ωy = 1/2, 1/3, letting φx −φy = 0, π/4, and π/2.
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Figure 1.27: (code) Trajectories of a body oscillating with different frequencies in two di-

mensions.

Example 4 (Lissajous figures):

• Connect two function generators to the two channels of an oscilloscope in
x-y.

• MATLAB simulation.

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Lissajous.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Lissajous.m
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1.2.3 Vibrations with equal frequencies superposed in one di-
mension

Vibratory movements can overlap. The result can be described as a sum,

x(t) = x1(t) + x2(t) = A1 cos(ωt+ α1) +A2 cos(ωt+ α2) (1.54)

= Re[A1e
ı(ωt+α1) +A2e

ı(ωt+α2)] = Reeıωt[A1e
ıα1 +A2e

ıα2 ] .

That is, the new motion is a cosine vibration, x(t) = A cosωt, with the phase,

tanα =
Im x(0)

Re x(0)
=

Im(A1e
ıα1 +A2e

ıα2)

Re(A1eıα1 +A2eıα2)
=
A1 sinα1 +A2 sinα2

A1 cosα1 +A2 cosα2
, (1.55)

and the amplitude,

A = |A1e
ıα1 +A2e

ıα2 | =
√
A2

1 +A2
2 + 2A1A2 cos(α1 − α2) . (1.56)

We consider the case A1 = A2,

tanα =
sinα1 + sinα2

cosα1 + cosα2
, A = 2A cos

α1 − α2

2
. (1.57)

The cases α1 = α2 or α2 = 0 further simplify the result.

1.2.4 Frequency beat

Vibratory movements with different frequencies can overlap. The result can be de-
scribed as a sum,

x(t) = x1(t) + x2(t) = A1 cosω1t+A2 cosω2t = Re [A1e
ıω1t +A2e

ıω2t] . (1.58)

Considering the case A1 = A2 we obtain,

x(t) = ARe [eıω1t + eıω2t] (1.59)

= ARe [eı(ω1+ω2)t/2eı(ω1−ω2)t/2 + eı(ω1+ω2)t/2e−ı(ω1−ω2)t/2]

= ARe eı(ω1+ω2)t/22 cos
(ω1 − ω2)t

2

= 2A cos
(ω1 + ω2)t

2
cos

(ω1 − ω2)t

2
.

Example 5 (Amplitude modulation): An important example is the amplitude

modulation of radiofrequency signals.

Example 6 (Visualization of beat frequencies on an oscilloscope):

• Connect two function generators to the two channels of an oscilloscope and
add the channels.

• MATLAB simulation.

• Modulate one signal by another in a frequency mixer.

.
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Figure 1.28: (code) Illustration of the beating of two frequencies ν1 = 5.5Hz and ν2 = 5Hz

showing the perceived vibration (red), the vibration with the frequency (ν1 + ν2)/2 (blue),

and the vibration with frequency (ν1 − ν2)/2 (yellow).

1.2.5 Amplitude and frequency modulation

Radio frequencies above 300 kHz can easily be emitted and received by antennas,
while audio frequencies are below 20 kHz. However, radio frequencies can be used
as carriers for audio frequencies. This can be done by modulating the audio signal
on the amplitude of the carrier () before sending the carrier frequency. The receiver
retrieves the audio signal by demodulating the carrier. Therefore, audio signals can
be transmitted by electromagnetic waves. Another technique consists in modulating
the frequency of these waves (). We will now calculate the spectrum of these two
modulations using complex notation and show how to demodulate the encoded audio
signals by multiplication with a local oscillator corresponding to the carrier wave.

1.2.5.1 AM

Let ω and Ω be the frequencies of the carrier wave and the modulation, respectively.
We can describe the amplitude modulation by,

U(t) = (1 + S(t)) cosωt . (1.60)

After the receiver has registered this signal, we demodulate it by multiplying it with
cosωt:

U(t) cosωt = (1 + S(t)) cos2 ωt = (1 + S(t))
(
1
2 + 1

2 cos 2ωt
)
. (1.61)

We purify this signal passing it through a low-pass filter eliminating the rapid oscil-
lations:

U(t) cosωt −→ 1
2 (1 + S(t)) . (1.62)

We retrieve the original signal S(t).

1.2.5.2 FM

We can describe the frequency modulation by,

U(t) = eı(ωt+N sinΩt) = eıωt
∞∑

k=−∞

Jk(N)eıkΩt . (1.63)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Batimento.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Batimento.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Batimento.m
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Figure 1.29: (code) Modulation signal.

The modulation of the carrier wave generates sidebands. This can be seen by expand-
ing the signal carrying the phase modulation into a Fourier series,

eıωt
∞∑

k=−∞

Jk(β)e
ıkΩt ≃ eıωt + J1(N)eıωt+ıΩt + J−1(N)eıωt−ıΩt (1.64)

when the modulation index N is small. Here, J−k(N) = (−1)kJk(N) are the Bessel
functions.

The spectrum of a signal with PM modulation consists of discrete lines, called
sidebands, whose amplitudes are given by Bessel functions,

S(ω) =

∞∑
k=−∞

|Jk(N)|2δ(ω + kΩ) . (1.65)

In real systems, the frequency bands have finite widths β due to frequency noise or
to the finite resolution of the detectors,

S(ω) =

∞∑
k=−∞

|Jk(N)|2 N2

(ω − kΩ)2 +N2
. (1.66)

Example 7 (Frequency spectrum):

• Modulate the frequency of a VCO.

• Show in the spectrum analyzer the transition to sidebands.

.

1.2.6 Exercises

1.2.6.1 Ex: Amplitude modulation

Consider a carrier wave of ω/2π = 1 MHz frequency whose amplitude is modulated
by an acoustic signal of Ω/2π = 1kHz: U(t) = A cosΩt cosωt. To demodulate the
signal, multiply the received wave U(t) by the carrier radiofrequency. Interpret the
result.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Modulationindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_SuperpositionAM01.pdf
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Figure 1.30: Illustration of radiofrequency signal transmission.

1.3 Damped and forced vibrations

Frequently, vibrations are exposed to external perturbations. For example, damping
forces due to friction exerted by the medium in which vibration takes place work
to waste and dissipate the energy of the oscillation and, therefore, to reduce the
amplitude of the oscillation. In contrast, periodic forces can pump energy into the
oscillator system and excite vibrations.

1.3.1 Damped vibration and friction

Let us first deal with damping by forces named Stokes friction, that is, forces which
are proportional to the velocity of the oscillating mass and contrary to the direction
of motion, Ffrc = −bv, where b is the friction coefficient. With this additional term,
the equation of motion is,

ma = −bv − kx . (1.67)

Figure 1.31: Oscillation damped by a viscous medium.

The calculation of the damped oscillator can be greatly simplified by the use of
complex numbers by making the ansatz,

x(t) = Aeλt , (1.68)

where λ is a complex number. We get,

mλ2 + bλ+ k = 0 , (1.69)

giving the characteristic equation,

λ = −γ ±
√
γ2 − ω2

0 , (1.70)
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with

ω0 =

√
k

m
and γ =

b

2m
. (1.71)

The friction determines the damping behavior. We distinguish three cases discussed
in the following sections.

1.3.1.1 Overdamped case

In the overdamped case, for ω0 < γ, there are two real solutions λ = −γ ± κ with
κ ≡

√
γ2 − ω2

0 for the characteristic equation, giving,

x(t) = e−γt(Ae−κt +Beκt) . (1.72)

Choosing the initial conditions,

x0 = x(0) = e−γt(Ae−κt +Beκt) = A+B (1.73)

0 = v(0) = −A(γ + κ)e−(γ+κ)t −B(γ − κ)e−(γ−κ)t = −A(γ + κ)−B(γ − κ) ,

we determine the amplitudes,

A =
x0
2

(
1− γ

κ

)
and B =

x0
2

(
1 +

γ

κ

)
. (1.74)

Finally, the solution is 5,

x(t) = x0e
−γt

[
coshκt+

γ

κ
sinhκt

]
. (1.75)

1.3.1.2 Underdamped case

In the underdamped case, for ω0 > γ, we have two complex solutions λ = −γ ± ıω
with ω ≡

√
ω2
0 − γ2, giving,

x(t) = e−γt(Aeıωt +Be−ıωt) . (1.76)

Choosing the initial conditions,

x0 = x(0) = e−γt(Aeıωt +Be−ıωt) = A+B (1.77)

0 = v(0) = −A(γ − ıω)e−(γ−ıω)t −B(γ + ıω)e−(γ+ıω)t = −A(γ − ıω)−B(γ + ıω) ,

we determine the amplitudes,

A =
x0
2

(
1 +

γ

ıω

)
and B =

x0
2

(
1− γ

ıω

)
. (1.78)

Finally, the solution is 6,

x(t) = x0e
−γt

[
cosωt+

γ

ω
sinωt

]
. (1.79)

5Note that for super-strong damping, we have κ ≃ γ and therefore,

x(t) = Ae−2γt + B .

, This is nothing more than the solution of the equation of motion without restoring force, ma = −bv.
6Note that, for very weak damping, we have γ ≃ 0 and ω ≃ ω0 and hence,

x(t) = Aeıω0t + Be−ıω0t .

This is nothing more than the solution of the frictionless equation of motion, ma = −kx.
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1.3.1.3 Critically damped case

In the critically damped case, for ω0 = γ, there is only one solution λ = −γ, giving

x(t) = Ae−γt . (1.80)

Since one solution is not sufficient to solve a second order differential equation, we
need to look for another linearly independent solution. We can try another ansatz,

x(t) = Bteλt , (1.81)

resulting in the characteristic equation,

m(λ2teλt + 2λeλt) + b(λteλt + eλt) + kteλt = 0 . (1.82)

The terms in eλt and teλt should disappear separately, giving,

2mλ+b = 0 and mλ2t+bλt+kt = 0 =⇒ λ = − b

2m
= −γ = −ω0 . (1.83)

Finally, the solution is,
x(t) = (A+Bt)e−γt . (1.84)

Choosing the initial conditions,

x0 = x(0) = (A+Bt)e−γt = A (1.85)

0 = v(0) = (−γA− γBt+B)e−γt = −γA+B ,

we determine the amplitudes,

A = x0 and B = γx0 . (1.86)

Finally, the solution is,
x(t) = x0(1 + γt)e−γt . (1.87)

Fig. 1.32 illustrates the damping of the oscillation for various friction rates γ.
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Figure 1.32: (code) Damped oscillation for ω0 = 10 s-1 and γ = 2.5 s-1 (red), 10 s-1 (green),

and 25 s-1 (blue).

The critical friction coefficient generates a damped movement without any ’over-
shoot’, since the velocity ẋ(t) only disappears for t = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OsciAmortecida.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OsciAmortecida.m
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1.3.1.4 Quality factor and energy loss

For a harmonic oscillation we establish the balance of energies,

E =
m

2
v2 +

k

2
x2 (1.88)

=
m

2

(
Aıω0e

ıω0t −Bıω0e
−ıω0t

)2
+
m

2
ω2
0

(
Aeıω0t +Be−ıω0t

)2
= 2mω2

0AB .

Now, for an underdamped oscillation we replace the amplitudes by A → Ae−γt and
B → Be−γt, such that,

E(t) = 2mω2
0ABe

−2γt . (1.89)

Obviously, the energy is decreasing at the rate 2γ.
We define the quality factor as the number of radians that the damped system

oscillates before its energy falls to e−1,

Q =
ω

2γ
=
ωm

b
≃ ω0m

b
. (1.90)

Comparing the initial energy with the energy remaining after one cycle,

E

∆E
=

E(0)

E(0)− E(2π/ω)
=

1

1− e−4πγ/ω
≃ ω

4πγ
, (1.91)

we find that the quantity,
Q

2π
=

E

∆E
(1.92)

represents a measure for the energy dissipation.

1.3.2 Forced vibration and resonance

We have seen that a damped oscillator loses its energy over time. To sustain the
oscillation, it is necessary to provide energy. The simplest way to do this, is to force
the oscillator to oscillate at a frequency ω by applying an external force F0 cosωt.
The question now is, what will be the amplitude of the oscillation and its phase with
respect to the phase of the applied force. We begin by establishing the equation of
motion,

ma+ bv +mω2
0x = F0 cosωt . (1.93)

The calculation can be greatly simplified by the use of complex numbers. We
write the differential equation as,

ma+ bv +mω2
0x = F0e

ıωt , (1.94)

making the ansatz x(t) = Aeıωt−ıδ, yielding

−ω2Aeıωt−ıδm+ ıωbAeıωt−ıδ +mω2
0Ae

ıωt−ıδ = F0e
ıωt . (1.95)

We rewrite this formula,

eıδ = A
m(ω2

0 − ω2) + ıbω

F0
. (1.96)
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Figure 1.33: Forced oscillation damped by a viscous medium.

Immediately we get the solutions,

tan δ =
sin δ

cos δ
=

Im eıδ

Reeıδ
=

bω

m(ω2
0 − ω2)

(1.97)

A =
∣∣Ae−ıδ

∣∣ = ∣∣∣∣ F0

m(ω2
0 − ω2) + ıωb

∣∣∣∣ = F0√
m2(ω2

0 − ω2)2 + b2ω2
.

The frequency response (spectrum) of the oscillator to the periodic excitation is
illustrated in Fig. 1.34. We see that, when we increase the friction, we decrease
the height and increase the width of the spectrum |A(ω)|. Fig. 1.34(b) shows that,
increasing the excitation frequency, the oscillation undergoes a phase shift of π.
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Figure 1.34: (code) Frequency response of the amplitude and phase of the oscillator for a

force of F0 = 1N, a mass of m = 1kg, a resonance frequency of ω0 = (2π) 5Hz, and a

friction coefficient of b = 0.5 (blue) or b = 1 (red).

We now ask, at what excitation frequency ω the oscillator responds with maximum
amplitude,

0 =
d

dωm
A(ωm) = F0ωm

2m2ω2
0 − 2m2ω2

m − b2

(m2ω4
0 − 2m2ω2

0ω
2
m +m2ω4

m + b2ω2
m)

3
2

. (1.98)

The numerator disappears for,

ωm =

√
ω2
0 −

b2

2m2
, (1.99)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OsciForcada.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OsciForcada.m
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and the amplitude becomes,

Am =
F0

b
√
ω2
0 − b2

4m2

. (1.100)

1.3.2.1 Quality factor

For weak damping γ ≪ ω0 and small detunings, |ω − ω0| ≪ ω0, we can approximate
the expression for the spectrum by,

A(ω) ≃

∣∣∣∣∣F0

m

1

2ω0(ω0 − ω) + ıω0
b
m

∣∣∣∣∣ =
∣∣∣∣ F0

2mω0

1

ω − ω0 − ıγ

∣∣∣∣ .
This function corresponds to a Lorentzian profile with the width FWHM ∆ω = 2γ.
The quality factor defined in the section discussing the damped oscillator measures
the quality of the resonance,

Q =
ω

2γ
=

ω

∆ω
. (1.101)

Example 8 (Harmonic vibration):

• Construct a L-C-circuit, excite it by a function generator by making a
frequency ramp, and show the resonance on the oscilloscope. It works
with a coil of N = 12 turns, of length ℓ = 6 cm and of radius r = 1.4 cm,
giving L = 1.4µH. We can also set R = 2.2Ω and C = 100 nF, giving
ω0 = 9.4MHz.

1.3.3 Exercises

1.3.3.1 Ex: Resolution of the damped oscillator equation

Solve the damped oscillator equation for 4km > b2 using the ansatz x(t) = Ae−γt cosωt.

1.3.3.2 Ex: Damped oscillation

In a damped oscillation the oscillation period is T = 1 s. The ratio between two
consecutive amplitudes is 2. Despite the large damping, the deviation of the period
T0 compared to the undamped oscillation is small. Calculate the deviation.

1.3.3.3 Ex: Damped physical pendulum

The physical pendulum shown in the figure consists of a disk of massM and radius R
suspended on an axes parallel to the symmetry axis of the disk and passing the edge
of the disk.
a. Calculate the inertial momentum of the disk, I =

∫
V
r2dm, with respect to the

suspension axes.
b. Derive the equation of motion by considering a weak Stokes damping due to fric-
tion proportional to the angular velocity and by approximating for small amplitude
oscillations.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_DampedOscillator01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_DampedOscillator02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_DampedOscillator03.pdf


30 CHAPTER 1. VIBRATIONS

c. What is the natural oscillation frequency of the pendulum (without friction)? How
to calculate the oscillation frequency considering friction?
d. Write down the solution of the equation of motion for the initial situation ϕ(0) = 0
and ϕ̇(0) = ϕ̇0.

Figure 1.35: Damped physical pendulum.

1.3.3.4 Ex: Pendulum with friction

Jane has prepared dinner and Tarzan (80 kg) and Cheeta (40 kg) must return home.
The house is in a tree at a height of 10m, so that both must swing home on a (massless)
rope hanging from l = 100m high tree. Tarzan grabs the rope at the height of its
center-of-mass h = 1.2m above ground, Cheeta because of its height is smaller at
0.8m above ground. With what initial speed both need to grab the rope to reach
the platform of the house with their feet. Consider Stokes’ friction force, FR = C · v
with C = 4 · 10−4 Ns/m (Tarzan) respectively, C = 2 · 10−4 Ns/m (Cheeta). Why is
this force different for the two? Treat the oscillating motion as small displacement.
Determine whether the vibration is weakly damped. Do you think Jane will have
dinner alone?

Figure 1.36: Pendulum with friction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_DampedOscillator04.pdf


1.3. DAMPED AND FORCED VIBRATIONS 31

1.3.3.5 Ex: Resolution of the forced oscillator equation

Solve the forced oscillator equation using the ansatz x(t) = A cos(ωt− δ).

1.3.3.6 Ex: Oscillation with coercive force

On a body of mass m along the x-axis act a force proportional to the displacement
Fh = −κx and a Stokes friction force FR = −γẋ. A time-dependent force is switched
on at time t = 0, while the body rests at the position x = 0. The force increases
linearly over time until it suddenly disappears at time t = T . Determine the work
that the external force has done up this time. Consider the various solutions of the
equation of motion resulting from the various combinations of κ and γ.

1.3.3.7 Ex: Oscillation with coercive force

You want to measure the friction coefficient γ of a sphere (mass m = 10 kg, diameter
d = 10 cm) in water. To do this, you let the sphere oscillate on a spring (spring
constant k = 100N/m) in a water bath exciting the oscillation by a periodic force,
F (t) = F0 cosωt. By varying the excitation frequency ω until observing the maximum
oscillation amplitude, you measure the resonance frequency ωw = 2π ·1Hz. Now, you
let the water out of the tub and repeat the measurement finding ω0 = 2π · 2Hz.
a. Determine the resting position of the mass in water and air.
b. Establish the differential equation of motion. Assume that the weight of the sphere
in water is reduced by the buoyancy V ρwatg, where V is the volume of the sphere
and ρwat the density of the water.
c. What is the value of γ?

Figure 1.37: Driven pendulum.

1.3.3.8 Ex: Electronic oscillator circuit

The instantaneous current I(t) in an L-R-C-circuit (inductance of a coil, ohmic re-
sistance and capacitance in series) excited by an alternating voltage source U(t) =
U0 cosωt satisfies the following differential equation,

Lİ +RI + C−1

∫ t

0

Idt′ = U0 sinωt .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator04.pdf
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a. Derive the equation for the moving charge Q̇ = I, compare the obtained equation
with that of the damped and forced spring-mass oscillator and determine the solution
for the current.
b. Determine the resonance frequency ω0 of the circuit.
c. Determine the quality factor Q of the circuit. How you can increase Q without
changing the resonance frequency?

Figure 1.38: Line filter.

1.3.3.9 Ex: Electronic oscillator circuit

A voltage U(t) is known to produce in an coil of inductance L the current IL =

L−1
∫ t′

0
Udt, in an ohmic resistance R the current IR = R−1U , and in a capacitor of

capacitance C the current I = CU̇ . In the parallel L-R-C circuit shown in the figure,
at each instant of time the sum of the currents IL, IR and IC must compensate the
current IF (t) = I0e

iωt supplied by an alternating current source, while the voltage
U(t) is the same across all components.
a. Derive the differential equation for the derivative of the voltage U̇ .
b. What would be the oscillation frequency of the current without source (I0 = 0)
and without resistance (R = ∞)?
c. What would be the oscillation frequency of the current without source (I0 = 0) but
with resistance (R ̸= ∞)?
d. Doing the ansatz U(t) = U0e

ıωt+ıϕ derive the characteristic equation.
e. Use the characteristic equation to calculate the impedance defined by Z ≡ |U0/I0|
and the phase ϕ of the current oscillation as a function of the frequency ω. Prepare
qualitative sketches of functions Z(ω) and ϕ(ω).

Figure 1.39: Notch filter.

1.3.3.10 Ex: Lorentz model of light-atom interaction

The Lorentz model describes the interaction of an electron attached to an atom with
an incident light beam as a damped oscillator. The electron’s binding to the nucleus

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator05.pdf
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is taken into account by a restoring force −ω2
0x. The decay of the excited state with

the rate Γ is the reason for the damping force −mΓẋ. And the excitation is produced
by the Lorentz force exerted by the electrical component of the light beam, eE0eıωt,
where e is the charge of the electron. Establish the differential equation and calculate
the amplitude of electron’s oscillation as a function of the excitation frequency.

1.3.3.11 Ex: Lorentz model of light-atom interaction

a. Electric fields E exert on electric charges q the Coulomb force F = qE . Write the
differential equation for the undamped motion of an electron (charge −e, mass m)
harmonically bound to its nucleus under the influence of an alternating electric field,
E = E0 sinωt.
b. Show that the general solution can be written as,

x(t) =
−eE0 sinωt
m(ω2

0 − ω2)
+A cosω0t+B sinω0t .

c. Write the solution in terms of the initial conditions x(0) = 0 = ẋ(0).

1.4 Coupled oscillations and normal modes

So far we have discussed the behavior of isolated oscillators. Energy losses or gains
were described in a bulk way via a coupling to an external reservoir without structure
of its own. However, the reservoir often has vibrational degrees of freedom, as well,
and can dump (or supply) energy. This usually happens when neighboring oscillators
share a rigid, massive, or sturdy medium. The transfer of energy to neighboring
oscillators is the key ingredient for any oscillatory propagation of energy called wave.

1.4.1 Two coupled oscillators

To discuss the coupling between oscillators at the most fundamental level, we consider
two ideal and identical pendulums (length L and mass m) coupled by a spring of
constant k, as shown in Fig. 1.40. The differential equations of motion for the angles

Figure 1.40: Two coupled pendulums.

θ1 and θ2 are,

mLθ̈1 = −mg sin θ1 − k(x1 − x2) (1.102)

mLθ̈2 = −mg sin θ2 − k(x2 − x1) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator07.pdf
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with xj = L sin θj . For small oscillations we have, therefore,

θ̈1 = − g
L sin θ1 − k

m (sin θ1 − sin θ2) ≃ −( g
L + k

m )θ1 +
k
mθ2 (1.103)

θ̈2 = − g
L sin θ2 − k

m (sin θ2 − sin θ1) ≃ −( g
L + k

m )θ2 +
k
mθ1 .

We define the normal coordinates of the vibration ℵ ≡ 1√
2
(θ1 − θ2) and Ψ ≡

1√
2
(θ1+θ2). We find the differential equations for ℵ and Ψ by adding and subtracting

the equations of motion,

θ̈1 + θ̈2 ≃ − g
L (θ1 + θ2) and θ̈1 − θ̈2 ≃ −( g

L + 2k
m )(θ1 − θ2) ,

or,
Ψ̈ + ω2

ΨΨ = 0 and ℵ̈+ ω2
ℵℵ = 0

using the angular frequencies of the vibrational normal modes,

ωΨ =

√
g

L
and ωℵ =

√
g

L
+

2k

m
.

1.4.2 Normal modes

Thus, the normal coordinates Ψ and ℵ allow a description of the motion by decoupled
linear differential equations. A vibration involving only one normal coordinate is
called normal mode. In this mode all the components participating in the oscillation
oscillate at the same frequency.

The importance of the normal modes is they are totally independent, that is,
they never exchange energy and they can be pumped separately. Therefore, the total
energy of the system can be expressed as the sum of terms containing the squares of
the normal coordinates (potential energy) and their first derivatives (kinetic energy).
Every independent path by which a system can gain energy is called degree of freedom
and has an associated normal coordinate. For example, an isolated harmonic oscillator
has two degrees of freedom, as it can gain potential or kinetic energy and two normal
coordinates, x and v. And the coupled oscillator system,

Eℵ = aℵ̇2 + bℵ2 and EΨ = aΨ̇2 + bΨ2 , (1.104)

has four degrees of freedom.7

Every movement of the system can be represented by a superposition of normal
modes,

ℵ = 1√
2
(θ1 − θ2) = ℵ0 cos(ωℵt+ ϕℵ) and Ψ = 1√

2
(θ1 + θ2) = Ψ0 cos(ωΨt+ ϕΨ) .

(1.105)
Choosing

√
2A = ℵ0 = Ψ0 and ϕℵ = ϕΨ = 0,

θ1 = 1√
2
(Ψ + ℵ) = A cosωℵt+A cosωΨt = 2A cos (ωΨ−ωℵ)t

2 cos (ωΨ+ωℵ)t
2 (1.106)

θ2 = 1√
2
(Ψ− ℵ) = A cosωℵt−A cosωΨt = 2A sin (ωΨ−ωℵ)t

2 sin (ωΨ+ωℵ)t
2 .

7Note that the motion of a single pendulum is a movement in two Cartesian dimensions and
therefore would have four degrees of freedom. However, the joint action of gravity and the tension
of the wire constrains the movement into one dimension thus freezing two degrees of freedom.
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The oscillation shows the behavior of a frequency beat 8.

Example 9 (Normal modes):

• Two pendulums suspended on a movable horizontal bar which, in turn, is
suspended by two wires to a rigid ceiling. Show (anti-)symmetric modes
and their different exposure to damping of the motion of the bar.

1.4.3 Normal modes in large systems

There are techniques for solving systems many coupled oscillator. Let us consider,
for example, a chain of n = 1, ..., N oscillators coupled by springs. We have,

Figure 1.41: Array of coupled pendulums.

θ̈n = −g
l
θn − k

m
(θn − θn+1)−

k

m
(θn − θn−1) . (1.107)

Inserting the ansatz θn ≡ Ane
iωt, we obtain

ω2An = ω2
0An + β2(An −An+1) + β2(An −An−1) , (1.108)

using the abbreviations ω2
0 = g/l and β2 = k/m. Defining the vector A⃗ ≡ (· · ·An · · · )

and the matrix,

M̂ ≡



ω2
0 + β2 −β2

−β2 . . .
. . .

. . . ω2
0 + 2β2 −β2

−β2 ω2
0 + 2β2 . . .

. . .
. . . −β2

−β2 ω2
0 + β2


, (1.109)

we put the characteristic equation into a form called an eigenvalue equation,

M̂A⃗ = ω2A⃗ . (1.110)

The matrix M̂ is characterized by the fact that it contains on its diagonal the energy
of each individual oscillator (that is, ω2

0 + 2β2 when the oscillator is in the middle of

8Normal modes are observed in the molecular vibrations of H2O and CO2 (see Pain).
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the chain, and ω2
0 + β2) at the two ends of the chain). On the secondary diagonals

(that is, at the positions Mn,n±1) are the coupling energies between two oscillators n
and n± 1. A normal mode of the system corresponds to an eigenvector of the matrix
M̂ , and the natural frequency of this mode corresponds to the respective eigenvalue.

The equation (1.110) has non-trivial solutions only, when the determinant of the
matrix M̂−ω2 vanishes. The eigenvalues are those ω2 which satisfy this requirement,

det(M̂ − ω21) = 0 . (1.111)

1.4.4 Dissipation in coupled oscillator systems

We now extend the system of two coupled pendulums to include damping. Assuming
that the movement of the pendulum is subject to damping,

θ̈1 = −Γθ̇1 − g
Lθ1 −

k
m (θ1 − θ2) (1.112)

θ̈2 = −Γθ̇2 − g
Lθ2 −

k
m (θ2 − θ1) ,

giving the collective modes,

Ψ̈ = θ̈1 + θ̈2 = −ΓΨ̇− g
LΨ (1.113)

ℵ̈ = θ̈1 − θ̈2 = −Γℵ̇ −
(
g
L + 2k

m

)
ℵ .

Assuming that the movement of the spring (not the movement of the pendulums) is
subject to damping,

θ̈1 = − g
Lθ1 −

k
m (θ1 − θ2)− Γ(θ̇1 − θ̇2) (1.114)

θ̈2 = − g
Lθ2 −

k
m (θ2 − θ1)− Γ(θ̇2 − θ̇1) ,

giving the collective modes

Ψ̈ = θ̈1 + θ̈2 = − g
LΨ (1.115)

ℵ̈ = θ̈1 − θ̈2 = −
(
g
L + 2k

m

)
ℵ − 2Γℵ̇ .

Thus, the anti-symmetric mode Ψ is free from damping, while the symmetric mode
ℵ damps out twice as fast. Therefore, Ψ is called the subradiant mode and ℵ the
superradiant mode.

1.4.5 Exercises

1.4.5.1 Ex: Energy of normal modes

Verify that the total energy of a system of two coupled oscillators is equal to the sum
of the energies of the normal modes.

1.4.5.2 Ex: Normal modes of two spring-coupled masses

Consider two different masses m1 and m2 coupled by a spring k.
a. Determine the equation of motion and the characteristic equation for each mass.
b. Write the characteristic equations in matrix form: M̂a⃗ = ω2a⃗, where a⃗ ≡ (a1, a2)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_NormalModes01.pdf
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1.4. COUPLED OSCILLATIONS AND NORMAL MODES 37

and aj are the amplitude of the oscillations and calculate the two eigenvalues of the
matrix.
c. Calculate the normal modes, that is, the eigenvectors solving the equation M̂a⃗ =
ω2
ka⃗ for each eigenvalue.

d. Derive the differential equations of the center-of-mass motion and the relative
motion. Compare the result with the normal modes.

1.4.5.3 Ex: Spring-coupled chain of masses

Consider a chain of spring-coupled masses.
a. Determine the equation of motion and the characteristic equation for each mass.
b. Calculate the normal modes for a chain consisting of three masses.

1.4.5.4 Ex: Normal modes of CO2

We consider the carbon dioxide molecule CO2, for which we make a spring-mass model
with three masses coupled by k springs in a linear chain. Calculate the frequencies of
the normal modes and the eigenvectors of the vibrations.

Figure 1.42: Normal modes of CO2.

1.4.5.5 Ex: Three coupled pendulums

Determine the frequencies of the oscillation modes of a chain of three spring-coupled
pendulums.

1.4.5.6 Ex: Super- and subradiance

We consider three carts attached by springs (spring constant k), as shown in the
figure. The inner carts have mass m and are subject to damping by friction with the
coefficient γ. The outer cart has mass M and friction Γ.
a. Establish the equations of motion of the three carts.
b. Discuss the case M → 0.

Figure 1.43: Super- and subradiant pendulums.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_NormalModes03.pdf
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1.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de F́ısica Básica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [ISBN]

http://isbnsearch.org/isbn/978-8-521-20801-2


Chapter 2

Waves

While in vibrating bodies the motion and the energy are localized in space, waves
do propagate and carry energy to other places. In fact, waves represent the most
important mechanism for transporting and exchanging energy and information. We
can understand a wave as a perturbation propagating through an elastic material
medium. In some cases, however, e.g. for electromagnetic waves, the propagation of
the wave is due to a self-sustained oscillation between two forms of energy (electric
and magnetic) without the need of a material medium. Here, is a classification of
the most common types of waves: A lecture version of this chapter can be found at

Table 2.1: Types of waves.

wave pulse sound sound surface light de Broglie

medium string air crystal fluid vacuum particle

polarize trans. long. trans./long. long. trans. long.

transform Galilei Galilei Galilei Galilei Lorentz Galilei

wave eq. Helmholtz Helmholtz Helmholtz Helmholtz Helmholtz Schrödinger

(watch talk).

2.1 Propagation of waves

There are several types of wave that we will classify according to the propagation
medium and to the polarization, that is, we will distinguish longitudinal and trans-
verse waves. There are media only supporting transverse waves (strings, water sur-
faces). Others only withstand longitudinal waves (sound in fluid media). Finally,
there are media supporting both (sound in solids, electromagnetic waves).

The simplest example of a pulse is a local deformation of a string, as shown in
Fig. 2.1. The pulse travels to one end of the string by a motion called propagation.
The propagation is not conditioned to any transport of mass, but all the particles of
the system go back to their original positions after the passage of the pulse. However,
there is energy transport along the string, since each of its portions suffers an increase
in kinetic and potential energy during the passage of the pulse.

In general, the pulse broadens during propagation, an effect called dispersion.
To simplify the problem let us, as a first approximation neglect the dispersion and

39
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Figure 2.1: Pulse propagation along a rope.

suppose that the pulse does not change its shape,

Y (x, t) = f(x− vt) , (2.1)

where the propagation velocity is positive when the pulse propagates in the direction
of the positive x-axis.

The behavior of the pulse at the end of the rope depends on its fixation. Attached
to a wall, the reflected pulse has opposite propagation amplitude and direction,

Yrfl(x, t) = −f(x+ vt) . (2.2)

Fixed to another rope, the pulse will be partially reflected and partially transmitted.

2.1.1 Transverse waves, propagation of pulses on a rope

Pulses on a rope are examples for transverse waves. The speed at which the pulse
propagates on a rope depends essentially on the properties of the string, that is, its
mass density µ and the applied tension T , but not on the pulse amplitude. We take
a small length element dx of the string with mass dm = µdx and consider a pulse
traveling with velocity v, as shown in Fig. 2.1.

Figure 2.2: Mass element of a rope upon a passage of a pulse.

The vertical force due to the difference of tensions is,

Fy = T sin θ(x+ dx)− T sin θ(x) . (2.3)

Assuming θ(x) small, such that sin θ(x) ≃ tan θ(x) = dY
dx ,

Fy = T

(
dY

dx

)
x+dx

− T

(
dY

dx

)
x

= T
∂2Y

∂x2
dx . (2.4)
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On the other hand, applying Newton’s second law to this string element, we find,

Fy = dm
∂2Y

∂t2
. (2.5)

Thus,
∂2Y

∂x2
=
µ

T

∂2Y

∂t2
. (2.6)

This equation is called wave equation and fully describes the propagation of the pulse
on the string. Since Y = f(x − vt) depends on both x and t, the derivatives that
appear in the equation are partial, that is, one derives with respect to one variable
keeping the other constant. To find the velocity, we write,

∂2Y

∂t2
=

∂

∂t

(
∂x

∂t

∂Y

∂x

)
= v

∂

∂t

(
∂Y

∂x

)
= v

∂

∂x

(
∂Y

∂t

)
= v

∂

∂x

(
∂x

∂t

∂Y

∂x

)
= v2

∂Y 2

∂x2
,

(2.7)
and compare the second relation with the wave equation, finding,

v =

√
T

µ
. (2.8)

Example 10 (Reflection of pulses on a rope):

• Excite a pulse on a rope fixed to the wall (i) directly or (ii) through a
thinner rope.

2.1.2 Longitudinal waves, propagation of sonar pulses in a
tube

Acoustic pulses are examples for longitudinal waves. They are due to a process of
compression and decompression of a gaseous medium (such as air), liquid or even
solid. Let us consider an oscillating piston inside a tube (cross section A) filled with
air of mass density ρ0, as shown in Fig. 2.3. When the piston moves, it causes a local
pressure increase. We want to find the velocity v at which the compression travels
along the tube.

As shown in Fig. 2.3, the piston causes a negative pressure gradient along the
tube giving rise to an unbalanced force which accelerates mass elements of air to the
right. To simplify the situation let us assume that the piston is moved with velocity
u within a time interval ∆t compressing the volume of the tube by a value

∆V = −Au∆t . (2.9)

During this time, the piston accelerates a mass m = ρ0V of air within a volume V
given by the propagation velocity v of the pulse along the tube,

V = Av∆t . (2.10)

The mass within this volume receives a momentum,

F∆t = mu . (2.11)
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Figure 2.3: Sound waves produced by a swinging piston.

The pressure difference inside and outside the volume V causes a pressure imbalance,

F = A∆P . (2.12)

With these relations we can calculate the compressibility of the gas,

1

κ
≡ − ∆P

∆V/V
=
F/A

u/v
=
mu/A∆t

u/v
=
ρ0V v

A∆t
= ρ0v

2 , (2.13)

we obtain the propagation velocity of the pulse in the gas,

v =

√
1

κρ0
. (2.14)

Thus, the velocity of sound propagation depends critically on the material medium.
We have var = 331m/s, vH2

= 1286m/s, vH2O = 331m/s, vrubber = 54m/s, and
vAl = 5100m/s.

To derive the equation of motion, we consider a thin gas element with thickness
∆x and mass m = ρ0A∆x subject to a difference of pressure on both sides of,

Px − Px+∆x = −∂Px

∂x
∆x = − ∂

∂x
(P0 +∆P )∆x = −∂∆P

∂x
∆x , (2.15)

where we subtracted the background pressure P0 assumed to be constant. This pres-
sure difference creates a force F = A(Px − Px+∆x) accelerating the gas element
following Newton’s law, F = mη̈, where η(x) is the displacement of the element, such
that,

∂η

∂x
=

∆V

V
(2.16)

and the compression (see Fig. 2.3). We therefore obtain,

ρ0∆x
∂2η

∂t2
=
F

A
= −∂∆P

∂x
∆x . (2.17)

Substituting ∆P by the relationship (2.13),

ρ0
∂2η

∂t2
= − ∂

∂x

(
− 1

κ

∂η

∂x

)
=

1

κ

∂2η

∂x2
, (2.18)

which gives the wave equation. Solve Excs. 2.1.7.1, 2.1.7.2, and 2.1.7.3.
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2.1.3 Electromagnetic waves

Electromagnetic waves are in several aspects different from mechanical longitudinal
or transverse waves. For example, they do not need a propagation medium, but
move through the vacuum at an extremely high speed. The speed of light, c =
299792458m/s exactly, is so high, that the laws of classical mechanics are no longer
valid, but must be replaced by relativistic laws. And since there is no propagation
medium, with respect to vacuum all inertial systems are equivalent, which will have
important consequences for the Doppler effect. We will show that the electromagnetic
wave equation almost comes out as a corollary of the theory of special relativity.

Electromagnetic waves always arise when a charge changes position. In this way
the theory of electromagnetic waves is also a consequence of the theory electromag-
netism, which is contained in Maxwell’s equations. We will introduce here, without
derivation, the wave equation for the electric and magnetic fields.

Figure 2.4: The electromagnetic spectrum.

2.1.3.1 Helmholtz equation

We have already seen how the periodic conversion between kinetic and potential
energy in a pendulum can propagate in space when the pendulum is coupled to
other pendulums attached to each other in a chain, and that this model explains the
propagation of a pulse on the string. We also discussed how electrical and magnetic
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energy can be interconverted in an electronic L-C-circuit with a capacitor storing
electrical energy and an inductance (a coil) storing magnetic energy. The law of
electrodynamics describing the transformation of electric field variations into magnetic
energy is Ampère’s law, and the law describing the transformation of magnetic field
variations into electric energy is Faraday’s law,

∂E⃗
∂t

↷ B⃗(t) ,
∂B⃗
∂t

↷ −E⃗(t) . (2.19)

Extending the circuit L-C to a chain, it is possible to show that the electromagnetic
oscillation propagates along the chain. This model describes well the propagation of
electromagnetic energy along a coaxial cable or the propagation of light in free space.

Figure 2.5: Analogy between the propagation of mechanical waves (above) and electromag-
netic waves (below).

The electrical energy stored in the capacitor and the magnetic energy stored in
the coil are given by,

Eele =
ε0
2 |E⃗ |

2 , Emag = 1
2µ0

|B⃗|2 , (2.20)

where the constants ε0 = 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am are called
permittivity and permeability of the vacuum. By analogy with the waves on a string, we
can write the wave equations (called Helmholtz equations) for plane electromagnetic
waves propagating along the x-axis,

∂2Ey
∂t2

=
1

ε0µ0

∂2Ey
∂x2

,
∂2Bz

∂t2
=

1

ε0µ0

∂2Bz

∂x2
. (2.21)

The formal derivation must be made from Maxwell’s equations, which are the
fundamental equations of the theory of electrodynamics. Here, we only note that,

• electromagnetic waves (in free space) are transverse;

• the electric field vector, the magnetic field vector, and the direction of propaga-
tion are orthogonal;

• the propagation velocity is the speed of light, because c2 = 1/ε0µ0.

2.1.3.2 Radiation intensity

In electrodynamic theory the energy flux is calculated by the Poynting vector,

S⃗(r, t) = 1
µ0
E⃗(r, t)× B⃗(r, t) . (2.22)
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The absolute value is the intensity of the light field,

I(r, t) = |S(r, t)| . (2.23)

2.1.4 Harmonic waves

In general, a light field is a superposition of many waves with many different frequen-
cies and polarizations and propagating in many directions. The laser is an exception.
Being monochromatic, polarized, directional, and coherent, it is very close to the ideal
of an harmonic wave, that is, a wave described by the function,

Y (x, t) = Y0 cos(kx− ω0t) , (2.24)

where ω0 = 2πν is the angular frequency of the oscillation and k = 2π/λ the wavevec-
tor. By inserting this function into the wave equation,

∂2Y

∂t2
= c2

∂Y 2

∂x2
, (2.25)

where we now call c the propagation velocity of the harmonic wave, we verify the
dispersion relation,

ω = ck . (2.26)

Figure 2.6: Illustration of a harmonic wave.

Often, the propagation velocity is independent of the wavelength, c(k) = const. In
this case, a wave composed of several waves with different wavevectors k propagates
without dispersing, that is, without changing its shape. In other cases, when c(k) ̸=
const, the wave deforms along its path.

2.1.5 Wave packets

Since the wave equation (2.25) is linear, the superposition principle is valid, that is,
if Y1 and Y2 are solutions, then αY1 + βY2 also is. More generally, we can say that, if
A(k)eı(kx−ωt) is a solution satisfying the wave equation for any k, then obviously,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk , (2.27)
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is. This means that the displacement Y (x) and the distribution of amplitudes A(k)
are related by Fourier transform, Y (x, t) = e−iωtFA(k).

Assuming a Gaussian distribution of wavevectors characterized by the width 1 ∆k,
A(k) = e−(k−k0)

2/2∆k2

, we obtain as solution for the wave equation,

Y (x, t) =

∫ ∞

−∞
e−(k−k0)

2/2∆k2

eı(kx−ωt)dk (2.28)

= eı(k0x−ωt)

∫ ∞

−∞
e−q2/2∆k2

eıqxdq =
√
2πke−∆k2x2/2eı(k0x−ωt) .

This solution of the wave equation describes an wave packet with a Gaussian
envelope 2, that is, a localized perturbation, as we discussed at the initial example
of a pulse propagating on a string. Obviously, other distributions of wavevectors are
possible.

Note that the width of the distribution of wavevectors, ∆k, and that of the spatial
distribution, ∆x ≡ 1/∆k satisfy a relation called Fourier’s theorem,

∆x∆k = 1 , (2.29)

which in quantummechanics turns intoHeisenberg’s uncertainty relation: The broader
a wavevector distribution, the narrower the spatial distribution, and vice versa. In
the limit of a sinusoidal wave described by a single wavevector, we expect a infinite
spatial extension of the wave.

2.1.6 Dispersion

We consider a superposition of two waves,

Y1(x, t) + Y2(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) (2.30)

= 2a cos
[
(k1−k2)x

2 − (ω1−ω2)t
2

]
cos
[
(k1+k2)x

2 − (ω1+ω2)t
2

]
.

The resulting wave can be regarded as a wave of frequency 1
2 (ω1+ω2)t and wavelength

1
2 (k1 + k2), whose amplitude is modulated by an envelope of frequency 1

2 (ω1 − ω2)t
and wavelength 1

2 (k1 − k2)x.
In the absence of dispersion the phase velocities of the two waves and the propa-

gation velocity of the envelope, called group velocity, are equal,

c =
ω1

k1
=
ω2

k2
=
ω1 − ω2

k1 − k2
=

∆ω

∆k
= vg . (2.31)

1∆k is half the total Gaussian width at rms (root-mean-square) height, that is, at 1/
√
e of the

maximum.
2The definition of the Fourier transform in one dimension is,

Y (x) = FA(k) ≡ 1√
2π

∫ ∞

−∞
A(k)eıkxdk .

For the Gaussian function we have,

Y (x) = 1√
2π

∫ ∞

−∞
e−ak2

eıkxdk = 1√
2π

e−x2/4a

∫ ∞

−∞
e−a(k−ix/2a)2dk

= 1√
2π

e−x2/4a

∫ ∞

−∞
e−aq2dq = 1√

2a
e−x2/4a .
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However, the phase velocities of the two harmonic waves can also be different, such
that the frequency depends on the wavelength, ω = ω(k). In this case, the phase
velocity also varies with the wavelength,

vg =
dω

dk
=

d

dk
(kc) = c+ k

dc

dk
. (2.32)

Often this variation is not very strong, such that it is possible to expand,

ω(k) = ω0+
dω

dk

∣∣∣∣
k0

·(k−k0)+
1

2

d2ω

dk2

∣∣∣∣
k0

·(k−k0)2 ≡ ω0+vg(k−k0)+β(k−k0)2 . (2.33)

In general we have, vg < c, a situation that is called normal dispersion. But there
are examples of abnormal dispersion, where vg > c, e.g. close to resonances or with
matter waves characterized by a quadratic dispersion relation ℏω = (ℏk)2/2m.
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Figure 2.7: (code) Gaussian (upper graphs) and rectangular (lower graphs) distribution of

amplitudes in momentum space (left) and in position space (right).

2.1.6.1 Rectangular wave packet with linear dispersion

As an example, we determine the shape of the wavepacket for a rectangular amplitude
distribution, A(k) = A0χ[k0−∆k/2,k0+∆k/2], subject to linear dispersion (expansion up

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_TeoremaFourier.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_TeoremaFourier.m
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to the linear term in Eq. (2.33)). By the Fourier theorem,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk = A0

∫ k0+∆k/2

k0−∆k/2

e
ı(kx−ω0t+

dω
dk |k0

(k−k0)t)
dk (2.34)

= A0e
ı(k0x−ω0t)

∫ k0+∆k/2

k0−∆k/2

e
ı(k−k0)

(
x− dω

dk |k0
t

)
dk

= A0e
ı(k0x−ω0t)

∫ ∆k/2

−∆k/2

e
ık

(
x− dω

dk |k0
t

)
dk = A0e

ı(k0x−ω0t)

∫ ∆k/2

−∆k/2

eıkudk

= A0e
ı(k0x−ω0t)

eı∆k/2u − e−i∆k/2u

ıu
= 2A0e

ı(k0x−ω0t)
sin u∆k

2

u
≡ A(x, t)eı(k0x−ω0t) .

With the abbreviation u ≡ x − dω
dk

∣∣
k0
t = x − vgt the interpretation of the group

velocity becomes obvious,

vg ≡ dω

dk

∣∣∣∣
k0

t . (2.35)

The envelope has the shape of a ’sinc’ function, such that the intensity of the wave
is,

|Y (x, t)|2 = A0∆k sinc
[
∆k
2 (x− vgt)

]
. (2.36)

Obviously, the wavepacket is localized in space. It moves at group velocity, but does
not diffuse.

2.1.6.2 Dispersion of a Gaussian wave packet subject to quadratic dis-
persion

Quadratic dispersion leads to a spreading of the wavepackets. We show this at the
example of the Gaussian wavepacket A(k) = e−α(k−k0)

2

, expanding the dispersion
relation (2.33) up to the quadratic term. By the Fourier theorem,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk = A0e

ı(k0x−ω0t)

∫ ∞

−∞
eı(k−k0)(x−vgt)−(α+iβt)(k−k0)

2

dk

= A0e
ı(k0x−ω0t)

∫ ∞

−∞
eık(x−vgt)−(α+iβt)k2

dk

≡ A0e
ı(k0x−ω0t)

∫ ∞

−∞
eıku−vk2

dk = A0

√
π
v e

ı(k0x−ω0t)e−u2/4v . (2.37)

The absolute square of this solution describes the spatial energy distribution of the
wavepacket,

|Y (x, t)|2 = A2
0

π√
vv∗

e−u2/4v−u2/4v∗
= A2

0

π

x0
√
α/2

e−(x−vgt)
2/x2

0 , (2.38)

with x0 ≡
√
2α

√
1 + β2

α2 t2. Obviously, for long times the pulse spreads out at constant
speed. Since the constant α gives the initial width of the pulse, we realize that an
initially compressed pulse spreads faster. Therefore, the angular coefficient of the
dispersion relation determines the group velocity, while the curvature determines the
spreading speed (dispersion).
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2.1.7 Exercises

2.1.7.1 Ex: Speed of sound

A person drops a stone from the top of a bridge and hears the sound of the stone
hitting the water after t = 4 s.
a. Estimate the distance between the bridge and the water level, assuming that the
propagation time of sound is negligible.
b. Improve the estimate by taking into account the finite speed of sound.

2.1.7.2 Ex: Distance of a lightning

An approximate method for estimating the distance of a lightning consists in starting
to count the seconds when the lightning stroke and stop counting when the thunder
arrives. The number of seconds counted divided by 3 gives the distance from the
lightning in kilometers. Estimate accuracy of this procedure.

2.1.7.3 Ex: Speed of sound

A student in her room listens to the radio broadcasting a nearby football game. She
is 1.6 km south of the field. On the radio, the student hears the noise generated by an
electromagnetic pulse caused by a lightning strike. Two seconds later she hears the
noise of thunder on the radio which was captured by the microphone of the football
field. Four seconds after hearing the noise on the radio, she hears the noise of the
thunder directly. Where did the lightning strike in relation to the soccer field?

2.1.7.4 Ex: Absence of dispersion in sound

Discuss the experimental evidence that leads us to assume that the speed of sound in
the audible range must be the same at all wavelengths.

2.1.7.5 Ex: Optical dispersion

a. While vacuum is strictly dispersionless, the refractive index of air depends on the
wavelength of light λ, on temperature T in ◦ C and on the atmospheric pressure P in
mbar like,

ns = 1 + 10−8

(
8342.13 +

2406030

130− 1012/λ2
+

15997

38.9− 1012/λ2

)
n = 1 + (ns − 1)

0.00185097P

1 + 0.003661T
.

Calculate the dispersion of air within range λ1 = 400 nm and λ2 = 800 nm.
b. Using Snell’s law,

n1
n2

=
sinα2

α1
,

calculate the angular dispersion dαar/dλ of a beam of light at the interface between
vacuum and atmospheric air for P = 1013mbar and T = 25◦ C around λ = 500 nm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_DistanciaRelampago.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom4.pdf
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2.1.7.6 Ex: Dispersion near an atomic resonance

Near an atomic resonance ω0 the refractive index can be approximated by,

n = 1− α

ω2 − ω2
0

,

where the polarizability of the gas α is a constant. Calculate the group velocity vg(ωl)
of a laser wave packet passing through a gas of these atoms as a function of the laser
frequency ωl. Approximate |ω − ω0| ≪ ω0. Make a qualitative chart of n(ωl), k(ωl),
of the phase velocity vf (ωl), and of the group velocity vg(ωl).

2.1.7.7 Ex: Group velocity near a broad transition

The refractive index of a dilute gas (density ρ) of atoms excited by a light beam of fre-
quency ω near a transition (resonant frequency ω0 and width Γ) can be approximated
by,

n =

√
1− 4πρΓ

k30(2∆ + ıΓ)
≃ 1− 2πρΓ

k30(2∆ + ıΓ)
,

where ck0 = ω0 and ∆ ≡ ω − ω0. Calculate the group velocity near resonance.

2.1.7.8 Ex: Dispersion in a metal

The dispersion ratio in metals can be approximated by,

n2(ω) = 1 + ω2
p

 fe
−ω2 − ıγeω

+
∑
j

fj
ω2
0j − ω2 − ıγjω

 ,

where ωp is called the plasma frequency and fe and fj are constants. Calculate the
group velocity vg(ω).

2.2 The Doppler effect

2.2.1 Sonic Doppler effect

Waves propagate from a source to an listener within an elastic material medium
with the propagation velocity v. So far, we assumed the source, the medium, and
the listener at rest. The question now is, what happens when one of these three
components gets in motion.

2.2.1.1 Source in motion

We imagine a source emitting signals at frequency f0. Within the time of a period
T = 1

f0
these pulses travel a distance,

λ = vT =
v

f0
, (2.39)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom5.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom6.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom7.pdf
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within the medium. While the source is at rest, the distance between the pulses is λ.
However, when the source moves in the propagation direction of the pulses, a resting
listener judges that the pulses are emitted within the medium at reduced distances
∆x, as shown in Fig. 2.8,

∆x = λ− usT . (2.40)

A listener now receives the pulses at the increased frequency of,

f =
v

∆x
=

v

λ− usT
=

vf0
v − us

=
f0

1− us/v
. (2.41)

This effect is called sonic Doppler effect. For small velocities we can expand,

f =
f0

1∓ us/v
≃ f0

(
1± us

v

)
, (2.42)

where the upper (lower) signals apply, when the source approaches (moves away from)
the listener.

Figure 2.8: Doppler effect due to a motion of the source. In (a) the source is at rest, in (b)
it moves toward the listener.

2.2.1.2 Listener in motion

Again, we consider the same source emitting signals at frequency f0. While the
source is at rest, the distance between the pulses is λ. However, when the listener is
approaching the source, as shown in Fig. 2.9, pulses are recorded by the listener in a
shorter time intervals,

T =
λ

v + ur
=

1

f
. (2.43)

That is, the listener measures a larger number of pulses,

f = f0

(
1± ur

v

)
, (2.44)

where the upper (lower) signs apply, when the receiver approaches (moves away from)
the source.
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Figure 2.9: Doppler effect due to a motion of the listener. In (a) the listener is at rest, in
(b) it moves toward the source.

2.2.1.3 Moving medium

We can combine the two Doppler effects into a single expression,

f = f0
v2 − v · ur

v2 − v · us
. (2.45)

The cases discussed above refer to the source or the listener being in motion with
respect to the medium carrying the wave considered at rest. If the medium is moving
at a velocity um, e.g. due to a wind moving the air, the velocities of the source and the
listener with respect to the medium are modified, us → us − um and ur → ur − um,
such that,

f = f0
1− (ur − um)/v

1− (us − um)/v
. (2.46)

The same result is obtained by a transformation of the propagation velocity of the
sound, v → v + um .

2.2.2 Wave equation under Galilei transformation

The Galilei transformation says, that we obtain the function describing the motion
in the system S′ simply by substituting x→ x′ and t→ t′ with 3,

t′ ≡ t and x′ ≡ x− ut or (2.47)

t ≡ t′ and x ≡ x′ + ut ,

which implies,

v′ =
∂x′

∂t′
=
∂x

∂t
− u = v − u . (2.48)

Newton’s classical mechanics is Galilei invariant, which means that fundamental
equations of the type,

mv̇i = −∇xi

∑
j

Vij(|xi − xj |) , (2.49)

3Note that the Galilei transform,(
ct′

x′

)
= G

(
ct

x

)
with G ≡

(
1 0

−β 1

)
is unitary because detG = 1.
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Figure 2.10: Wave in the inertial system S seen by an observer moving at the velocity u in
the system S′.

do not change their form under Galilei transform. In contrast, the wave equation is
not Galilei invariant. To see this, we consider a wave in the inertial system S being at
rest with respect to the propagation medium. The wave is described by Y (x, t) and
satisfies the wave equation,

∂2Y (x, t)

∂t2
= c2

∂2Y (x, t)

∂x2
. (2.50)

An observer be in the inertial system S′ moving with respect to S with velocity u,
such that x′ = x − ut. The question now is, what is the equation of motion for this
wave described by Y ′(x′, t′), that is, we want to check the validity of,

∂2Y ′(x′, t′)

∂t′2
?
= c2

∂2Y ′(x′, t′)

∂x′2
. (2.51)

For example, the wave Y (x, t) = sin k(x− ct) traveling to the right is perceived in
the system S′, also traveling to the right, as Y ′(x′, t′) = sin k[x′− (c−u)t′] = Y (x, t).
Hence,

Y ′(x′, t′) = Y (x, t) , (2.52)

that is, we expect that the laws valid in S are also valid in S′. We calculate the
partial derivatives,

∂Y ′(x′, t′)

∂t′
=
∂Y (x, t)

∂t′
=

∂t

∂t′
∂Y (x, t)

∂t

∣∣∣∣
x=const

+
∂x

∂t′
∂Y (x, t)

∂x

∣∣∣∣
t=const

=
∂Y (x, t)

∂t
+ u

∂Y (x, t)

∂x

∂Y ′(x′, t′)

∂x′
=
∂Y (x, t)

∂x′
=

∂t

∂x′
∂Y (x, t)

∂t

∣∣∣∣
x=const

+
∂x

∂x′
∂Y (x, t)

∂x

∣∣∣∣
t=const

=
∂Y (x, t)

∂x
. (2.53)

Therefore, we come to the conclusion that in the system propagating with the wave,
the wave equation is modified,

∂2Y ′(x′, t′)

∂t′2
=
∂2Y (x, t)

∂t2
+ 2u

∂2Y (x, t)

∂t∂x
+ u2

∂2Y (x, t)

∂x2
(2.54)

= c2
∂2Y (x, t)

∂x2
+ 2u

∂2Y (x, t)

∂t∂x
+ u2

∂2Y (x, t)

∂x2

= (c2 + u2)
∂2Y (x, t)

∂x2
+ 2u

∂2Y (x, t)

∂t∂x
= (c2 − u2)

∂2Y ′(x′, t′)

∂x′2
+ 2u

∂2Y ′(x′, t′)

∂t′∂x′
.

Only in cases, where the wavefunction can be written as Y (x, t) = f(x − ct) =
f(x′ − (c − u)t′) = f ′(x′ − ct′) = Y ′(x′, t′), do we obtain a wave equation similar to
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the one of the system S, but with the modified propagation velocity,

∂2f ′(x′ − ct′)

∂t′2
= (c2 − u2)

∂2f ′(x′ − ct′)

∂x′2
+ 2u

∂2f ′(x′ − ct′)

∂x′∂t′
(2.55)

= (c2 − u2)
∂2f ′(x′ − ct′)

∂x′2
+ 2u

∂2f(x′ − (c− u)t′)

∂x′∂t′

= (c2 − u2)
∂2f ′(x′ − ct′)

∂x′2
− 2u(c− u)

∂2f ′(x′ − ct′)

∂x′2
= (c− u)2

∂2f ′(x′ − ct′)

∂x′2
.

The observation that the wave equation is not Galilei-invariant expresses the fact
that there is a preferential system for the wave to propagate, which is simply the
system in which the propagation medium is at rest. Only in this inertial system will
a spherical wave propagate isotropically.

Example 11 (Wave equation under Galilei transformation): We now
verify the validity of the wave equation in the propagating system S′ using the
example of a sine wave,

(c2 − u2)
∂2 sin k[x′ − (c− u)t′]

∂x′2
+ 2u

∂2 sin k[x′ − (c− u)t′]

∂x′∂t′

= −k2(c2 − u2) sin k[x′ − (c− u)t′] + 2uk2(c− u) sin k[x′ − (c− u)t′]

= −k2(c− u)2 sin k[x′ − (c− u)t′] =
∂2 sin k[x′ − (c− u)t′]

∂t′2
.

2.2.3 Wave equation under Lorentz transformation

The question now is, how about electromagnetic waves which, as we have already
noted and as has been verified by the famous Michelson experiment, survive with-
out any medium. If there is no propagation medium, all inertial systems should be
equivalent and the wave equation should be the same in all systems, as well as the
propagation velocity, i.e. the speed of light. These were the consideration of Henry
Poincaré. To resolve the problem we need another transformation than the one of
Galileo Galilei. Who found it first was Hendrik Antoon Lorentz, however the biggest
intellectual challenge was to accept all the consequences that this transformation
bears. It was Albert Einstein who accepted the challenge and created a new mechan-
ics called relativistic mechanics. As the wave equation for electromagnetic waves,
called the Helmholtz equation, is a direct consequence of Maxwell’s theory, it is not
surprising that the relativistic theory is not only compatible with the electrodynamic
theory, but provides a deeper understanding of it.

We begin by making the ansatz of a general transformation interconnecting the
temporal and spatial coordinates by four unknown parameters, γ, γ̃, β, and β̃,

ct = γ(ct′ + βx′) and x = γ̃(x′ + β̃ct′) . (2.56)

The same calculation made for the Galilei transform now gives the first derivatives,

∂Y ′(x′, t′)

c∂t′
=
∂Y (x, t)

c∂t′
=

∂t

∂t′
∂Y (x, t)

c∂t

∣∣∣∣
x=const

+
∂x

c∂t′
∂Y (x, t)

∂x

∣∣∣∣
t=const

= γ
∂Y (x, t)

c∂t
+ γ̃β̃

∂Y (x, t)

∂x

(2.57)

∂Y ′(x′, t′)

∂x′
=
∂Y (x, t)

∂x′
=
∂ct

∂x′
∂Y (x, t)

c∂t

∣∣∣∣
x=const

+
∂x

∂x′
∂Y (x, t)

∂x

∣∣∣∣
t=const

= γβ
∂Y (x, t)

c∂t
+ γ̃

∂Y (x, t)

∂x
.
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The second derivatives and the application of the wave equation in the system S
give,

∂2Y ′(x′, t′)

c2∂t′2
= γ2

∂2Y (x, t)

c2∂t2
+ 2γγ̃β̃

∂2Y (x, t)

c∂t∂x
+ (γ̃β̃)2

∂2Y (x, t)

∂x2
(2.58)

= γ2
∂2Y (x, t)

∂x2
+ 2γγ̃β̃

∂2Y (x, t)

c∂t∂x
+ (γ̃β̃)2

∂2Y (x, t)

c2∂t2

= (γβ)2
∂2Y (x, t)

c2∂t2
+ 2γγ̃β

∂2Y (x, t)

c∂t∂x
+ γ̃2

∂2Y (x, t)

∂x2
=
∂2Y (x′, t′)

∂x′2
.

That is, the wave equation in the system S′ has the same form 4. Thus, the require-
ment of invariance of the wave equation allows to affirm,

γ = γ̃ and (γβ)2 = (γ̃β̃)2 and β = β̃ . (2.59)

In addition, the transformation(
ct′

x′

)
= L

(
ct

x

)
with L ≡

(
γ γβ

γβ γ

)
(2.60)

has to be unitary, that is,

1 = detL = γγ̃ − γγ̃ββ̃ = γ2(1− β2) , (2.61)

which allows to relate the parameters γ and β by,

γ =
1√

1− β2
. (2.62)

Finally and obviously, we expect to recover the Galilei transform at low velocities,

ct = γ(ct′ + βx′) → ct and x = γ(x′ + βct′) → x+ ut . (2.63)

That is, the limit is obtained by γ → 1 and γβc→ u, such that,

β =
u

c
. (2.64)

such that the Lorentz transform from one inertial system S to another system S′ is,

t′ = γ
(
t− u

c2x
)

and x′ = γ(x− ut) or (2.65)

t = γ
(
t′ + u

c2x
′) and x = γ(x′ + ut′) .

2.2.4 Relativistic Doppler effect

We have seen at the example of sonic waves, that the magnitude of the Doppler
effect depends on who moves with respect to the medium, whether it is the source
or the listener. Electromagnetic waves, however, propagate in empty space, hence
there is no material medium or wind. According to Einstein’s theory of relativity,
there is no absolute motion and the propagation velocity of light is the same for all
inertial systems. Therefore, the theory of the sonic Doppler effect can not apply to
electromagnetic waves. To deal with the Doppler effect of light, we need to talk a
little about time dilation.

4Note that the calculus is dramatically simplified using the covariant formalism of 4-dimensional
space-time vectors introduced by Hermann Minkowski and Gregory Ricci-Curbastro.
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2.2.4.1 Dilation of time

We consider a clock flying through the lab S with the velocity v. The clock produces
regular time intervals for which we measure in the lab the duration t2 − t1. The
spatio-temporal points are Lorentz-transformed to the system S′ in which the clock
is at rest by, (

ct′j
z′j

)
=

(
γctj − γβzj
−γβctj + γzj

)
. (2.66)

Hence,

t′2 − t′1 = γt2 − γβ
z2
c

− γt1 + γβ
z1
c

(2.67)

= γt2 − β

(
z′

c
+ γβt2

)
− γt1 + β

(
z′

c
+ γβt1

)
= γ−1(t2 − t1) .

Consequently, in the lab the time interval seems longer than in the resting system.

Example 12 (Doppler effect on a moving laser): Coming back to the
Doppler effect we now consider a light source flying through the lab S, for
example, a laser operating at a frequency ω′, which is well defined by an atomic
transition of the active medium. A spectrometer installed in the same resting
system S′ as the laser will measure just this frequency. Now we ask ourselves,
what frequency would a spectrometer installed in the lab measure. The classical
response has been derived for a moving sound source,

ω = ω′ − ku = ω′ − ω

c
u =

ω′

1 + u
c

, (2.68)

with k = ω/c. But now, because of time dilation, we need to multiply by γ,

ω =
γ−1ω′

1 + u
c

=

√
1− β

1 + β
ω′ ≃ ω′

(
1± u

c
+

u2

2c2

)
. (2.69)

2.2.5 Exercises

2.2.5.1 Ex: Sonic Doppler effect

A speaker hanging from a wire of length L = 1m oscillates with a maximum angle of
θm = 10◦ and emits a sound of ν = 440Hz.
a. What is the frequency of oscillation of the pendulum?
b. What is the energy Ecin + Epot of the oscillation?
c. What is the maximum oscillation speed?
d. What are the minimum and maximum frequencies of the sound perceived by a
stationary receiver.

2.2.5.2 Ex: Sonic Doppler effect

Two identical speakers uniformly emit sound waves of f = 680Hz. The audio power
of each speaker is P = 1mW. A point P is r1 = 2.0m away from one device and

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler02.pdf
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r2 = 3.0m from the other.
a. Calculate the intensities I1 and I2 of the sound from each speaker separately at the
P.
b. If the emission of the speakers were coherent and in phase, what would be the
sound intensity in P?
c. If the emission of the speakers were coherent with a phase difference of 180◦, what
would be the sound intensity in P?
d. If the speaker output were incoherent, what would be the sound intensity in P?

2.2.5.3 Ex: Sonic Doppler effect

Suppose that a source of sound and a listener are both at rest, but the medium is
moving relative to this frame. Will there be any variation in the frequency heard by
the observer?

2.2.5.4 Ex: Sonic Doppler effect

Consider a source that emits waves of frequency ffnt moving at velocity vfnt on the
x-axis. Consider an observer moving with velocity vobs also on the x-axis. What will
be the frequency perceived by the observer? Call the wave propagation velocity of c.

2.2.5.5 Ex: Sonic Doppler effect

Two trains travel on rails in opposite directions at velocities of the same magnitude.
One of them is whistling. The whistle frequency perceived by a passenger on the
other train ranges from 348Hz when approaching to 259Hz when moving away.
a. What is the velocity of the trains.
b. What is the frequency of the whistle.

2.2.5.6 Ex: Sonic Doppler effect

On a mountain road, while approaching a vertical wall which the road will surround,
a driver is honking his horn. The echo from the wall interferes with the sound of
the horn, producing 5 beats per second. Knowing that the frequency of the horn is
200Hz, what is the speed of the car?

2.2.5.7 Ex: Sonic Doppler effect

A fixed sound source emits a sound of frequency ν0. The sound is reflected by a
fast approaching object (velocity u). The reflected echo returns to the source, where
it interferes with the emitted waves giving rise to frequent beats ∆ν. Show that it
is possible to determine the amplitude of the velocity of the moving object |u| as a
function of ∆ν, of ν0, and of the speed of sound c.

2.2.5.8 Ex: Sonic Doppler effect

Two cars (1 and 2) drive in opposite directions on a road, with velocities of amplitudes
v1 and v2. Car 1 travels against the wind, whose velocity is V . At sight of car 2

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler08.pdf
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the driver of car 1 presses his horn, whose frequency is ν0. The speed of sound in
motionless air is c. What is the frequency ν of the horn sound perceived by the driver
of car 2? What is the frequency ν′ heard by the driver of a car 3 traveling in the same
direction as car 1 and at the same speed?

2.2.5.9 Ex: Sonic Doppler effect

A physicist is molested by a fly orbiting his head. Since he is also a musician, he
realizes that the sound of the buzz varies by one pitch. Calculate the speed of the fly.

2.2.5.10 Ex: Doppler effect

a. In a storm with wind velocity v a speaker well attached to the ground makes a
sound of frequency f0. How do you calculate the frequency recorded by a microphone
taken by the wind and driven away from the speaker at the speed u?
b. Verify your answer in (a) by comparing the three cases (i) u = 0, (ii) u = v, and
(iii) v = 0 with the cases of a moving source or receiver.

2.2.5.11 Ex: Sonic Doppler effect

A citizen of São Carlos is molested by a Tucano airplane operated by the Academia das
Forças Aéreas de Pirassununga. He notices that while the airplane realizes looping on
top of his head, the emitted sounds varies by up to an octave. Estimate the airplane’s
velocity.

2.3 Interference

The superposition of two counterpropagating waves can generate a standing wave. In
these waves the oscillation amplitude depends on the position, but there is no energy
transport.

2.3.1 Standing waves

We consider two waves Y±(x, t) = A cos(kx∓ ωt+ ϕ) propagating in opposite direc-
tions. In the case of a string this situation can be realized, e.g. by exciting a wave
Y−(x, t) propagating in −x direction, reflecting it subsequently at the end of the string
(x = 0), and letting the wave Y+(x, t) propagate back in x direction,

Y (x, t) = Y−(x, t) + Y−(x, t) = A cos(kx+ ωt)±A cos(kx− ωt) . (2.70)

The sign of the reflected wave depends on how the end of the string is attached. If
the end is fixed, the reflected wave inverts its amplitude. If it is free to move, the
amplitude remains unaltered.

Let L be the length of the rope. The boundary conditions can be formulated as
follows: When one end is clamped, the oscillation amplitude must be zero at this end,

Y (0, t) = 0 or Y (L, t) = 0 . (2.71)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler11.pdf
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When one end is loose, the amplitude of oscillation must be maximum,

Y (0, t) = A or Y (L, t) = A . (2.72)

Figure 2.11: Superposition of a left-bound wave (a) with a wave reflected at a clamped end
(b) or a loose end (c).

2.3.1.1 Rope with two ends fastened

In case that the two ends of the rope are clamped, we can simplify the superposition
(2.70),

Y (x, t) = A cos(kx+ ωt)−A cos(kx− ωt) = 2 sin kx sinωt . (2.73)

The boundary condition, Y (L, t) = 0, requires,

kL =
2πL

λ
= nπ , (2.74)

for a natural number n. This means that for a given length L and a given propagation
velocity v, we can only excite oscillations satisfying,

λ =
2L

n
and ν =

v

λ
= n

v

2L
. (2.75)

Figure 2.12: Vibration modes of a string fot (left) both ends tight up and (right) for one
loose end.
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2.3.1.2 Rope with one free end

In case that the end of the string at x = 0 is loose, we can simplify the superposition
(2.70),

Y (x, t) = A cos(kx+ ωt) +A cos(kx− ωt) = 2 cos kx cosωt . (2.76)

The boundary condition, Y (L, t) = 0, requires,

ϕ = π
2 and kL =

2πL

λ
=
(
n− 1

2

)
π , (2.77)

for a natural number n. This means that for a given length L and a given propagation
velocity v, we can only excite oscillations satisfying,

λ =
2L

n− 1
2

and ν =
v

λ
=
(
n− 1

2

) v

2L
. (2.78)

Example 13 (Stationary sound wave):

• Exciting a stationary sound wave in a bottle.

• Exciting a standing sound wave on a guitar string.

2.3.2 Interferometry

2.3.2.1 Phase matching of two laser beams

When phase-matching two plane waves E1 = Aeıω1t and E2 = Aeıω2t on a photodiode,
such that their wavevectors are parallel, the photodiode generates a beat signal,

I = |E1 + E2|2 = AB[2 + 2 cos(ω1 − iω2)t] . (2.79)

Figure 2.13: Principle of a beat frequency measurement.

In order to get a high signal contrast, a good phase-matching is important. It is
particularly important to adjust the wavevectors to be absolutely parallel. In practice,
however, this can be tricky, as the laser beams are frequently not plane waves, but
have a finite diameter and radius of curvature.

Example 14 (Laser interferometry):

• Construct Michelson and Mach-Zehnder laser interferometers with one
mirror mounted on a piezo. Show interference rings.
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2.3.3 Diffraction

According to the Huygens principle, each point Pz within a slit emits a spherical wave
reaching a given point Pk of the screen with a phase lag corresponding to the distance,
as shown in Fig. 2.14,

r12 = PηPy =
√
(y − η)2 + z2 . (2.80)

Thus, the phase difference between this ray and a ray coming out of the origin (which
we place somewhere on the optical axis) is,

ϕ = k∆r12 = k(
√
(y − η)2 + z2 −

√
y2 + z2) ≃ − kyη√

y2 + z2
≃ −kyη

z
≡ qη , (2.81)

with q = k sinα = ky/z. If A(η) is the amplitude of the excitation at the point η
of the slit, then B(y) = 1

z e
ıϕ is the amplitude at point y of the screen. Adding the

contributions of all points,

B(q) =
∑
z

eıϕ(y,z) →
∫
A(η)eıqηdη . (2.82)

We see that the amplitude distribution on the screen B(y) is nothing more than the
Fourier transform of the amplitude distribution A(η) within the slit, regardless of the
shape of the slit.

Figure 2.14: Fraunhofer diffraction at the slit.

The theory can be extended to 2D and 3D geometries, for example, a distribution
of point-like scatterers within a given volume.

2.3.3.1 Single slit

As an example, we calculate the interference pattern behind a single slit. The Fourier
transform of A(η) = χ[−d/2,d/2] is,

B(q) =

∫ d/2

−d/2

eıqηdη =
eıqη

ıq

∣∣∣∣d/2
−d/2

= d
sin 1

2qd
1
2qd

. (2.83)

The intensity is I(q) = cε0|B(q)|2.

2.3.3.2 Diffraction grating

We now calculate the interference pattern behind a diffraction grating with N = 1000
infinitely thin slits aligned within one millimeter. The Fourier transform of A(η) =
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∑N
n=1 χ[(n−1)d,(n−1)d+∆d] is,

B(q) =

N∑
n=1

∫ (n−1)d+∆d

(n−1)d

eıqηdη =
eıq∆d − 1

ıq

N∑
n=1

eı(n−1)qd (2.84)

≃ ∆d

N∑
n=0

eınqd = ∆d
1− eıNqd

1− eıqd
,

where we approximated for q∆d≪ 1. For N → ∞ we can approximate further,

B(q) =
∆d

1− eıqd
. (2.85)

This is the Airy function, which is zero everywhere except at points where qd = 2nπ.
The intensity is,

I(q) = cε0|B(q)|2 = cε0
∆d2

2− 2 cos qd
= cε0

(
∆d

2 sin qd
2

)2

. (2.86)

The grating constant is d = 0.001mm. The resulting pattern can be interpreted as

-5 0 5

qd/π

-0.5

0

0.5

1

B
(q
)

Figure 2.15: (code) Intensity distribution behind a diffraction grating for a single slit (red),

a double slit (blue), and an infinite diffraction grating (green).

arising from a regular chain of antennas emitting synchronously. With a large number
of point antennas, the chain emits in very well-defined directions. In addition, the
direction can be controlled by arranging for a well-defined phase shift between the
fields driving neighboring antennas.

2.3.4 Plane and spherical waves

In three dimensions the wave equation takes the form,

0 = 2E ≡
(

1

c2
∂

∂t
−∇2

)
E . (2.87)

In Cartesian coordinates, this gives,

0 =

(
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
E . (2.88)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Fendas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Fendas.m
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Plane waves, that is, waves described by the function,

Y (r⃗, t) = Y0 sin(k⃗ · r⃗ − ωt) , (2.89)

satisfy the wave equation if,

0 = −ω
2

c2
+ k2x + k2y + k2z = − ω

c2
+ k⃗2 . (2.90)

2.3.4.1 Spherical waves

Spherical waves, that is, waves described by the function,

Y (r, t) = f(r) sin(kr − ωt) , (2.91)

also satisfy the wave equation, provided the function f(r) satisfies certain conditions.
To find these conditions we use the representation of the Laplace operator in spherical
coordinates,

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
, (2.92)

and insert the ansatz for Y (r, t) into the wave equation. We have on one hand,

1

c2
d2

dt2
(f sin) = −ω

2

c2
f sin . (2.93)

On the other hand,

1

r

d2

dr2
(rf sin) =

1

r

d

dr
[f sin+rf ′ sin+krf cos] (2.94)

= f ′′ sin+
2f ′

r
sin−k2f sin+2k

r
f cos+2kf ′ cos ,

such that,

0 = 2f sin = −
(
f ′′ +

2f ′

r

)
sin−2k

(
f ′ +

f

r

)
cos . (2.95)

Thus the function f must satisfy the radial differential equation,

rf ′ + f = 0 . (2.96)

This equation can be easily solved with the result f(r) = r−1.

2.3.5 Formation of light beams

We consider monochromatic waves with frequency ω. Other waveforms can be syn-
thesized by superpositions of waves with different frequencies. We also restrict to
scalar waves. In fact, electromagnetic light fields are vectorial, however, close to the
axis of an optical beam the fields are practically uniformly polarized, and representing
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the amplitude of the field by a scalar wave is an excellent approximation. The field
amplitude ψ(r, t) is governed by the following scalar wave equation,

∇2ψ =
1

c2
∂2ψ

∂t2
. (2.97)

We let ψ be of the form,

ψ(r, t) = A(r)eı[ϕ(r)−ωt] , (2.98)

where A and ϕ are real functions of space. A is the amplitude, and the exponent
is called the phase of the wave. In this form, it is implied that abrupt spatial or
temporal variations are contained in the phase. The surface obtained by fixing the
phase equal to a constant,

ϕ(r)− ωt = const (2.99)

is called wave front or phase front. The fast motion associated with a wave can be
followed through the propagation of a particular wavefront. The interference between
two waves is formed by the fronts of the two waves. The speed at which a particular
wavefront is moving is called phase velocity. Suppose we follow a particular wavefront
at the moment t: At time t + ∆t, the phase front will have moved to another sur-
face. A point r on the original surface will have moved to another point r+∆r [see
Fig. 2.16(a)]:

ϕ(r+∆r)− ω(t+∆t) = ϕ(r)− ωt = const (2.100)

Expanding ϕ(r+∆r) ≃ ϕ(r) +∇ϕ(r)∆r, we obtain,

∇ϕ(r)∆r = −ωt . (2.101)

∇ϕ(r) is orthogonal to the phase front and is called the wavevector. ∆r is smallest in
the direction ∇ϕ, and the wavefront propagates with the velocity,

|∆r|
∆t

=
ω

|∇ϕ(r)|
. (2.102)

which is the phase velocity. The phase velocity can vary from point to point in space.

Example 15 (Phase velocity of a superposition of two plane waves): The
superposition of two plane waves with wavevectors k1,2 = kêz cos θ ± kêx sin θ
is described by,

ψ(r, t) = A0e
ı(k1·r−ωt) +A0e

ı(k2·r−ωt) = 2A0 cos(kx sin θ)e
ı(kz cos θ−ωt) .

(2.103)

The phase front of this wave is a plane with normal vectors pointing along the

z-axis, as illustrated in Fig. 2.16(b), and the phase velocity is now ω/k cos θ =

c/ cos θ > c.

2.3.5.1 Beam formation by superposition of plane waves

Plane waves extend throughout the space and are uniform in transverse direction,
whereas an optical beam is confined in transverse direction. However, as we saw in
the last example, by superposing two plane waves, a resulting wave can be obtained
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which varies sinusoidally in transverse direction. By extrapolating this concept to su-
perpositions of many plane waves, it is possible to construct by interference arbitrary
transverse amplitude distributions. The propagation of a confined wave is the essence
of diffraction theory. A particular case is the Gaussian beam. For mathematical sim-
plicity and ease of visualization let us restrict ourselves to waves in two dimensions
in the x-z plane. Only in the final phase will we present the complete results for
three-dimensional Gaussian beams.

Figure 2.16: Superposition of two plane waves. The phase velocity along the direction z is
higher than c, the speed of light, because in one period, the wavefront of each partial wave
propagates over a distance λ, but along the z axis over a distance of λ/ cos θ.

Before going into detailed calculations, we consider the last example again. The
transverse standing wave resulting from the superposition of two plane waves, each
one propagating at an angle θ with respect to the z-axis has a spatial frequency
k sin θ ≃ kθ for small θ. We now come to a very important property of wave diffraction.
Suppose that, in order to confine the wave in transverse direction, we continue adding
plane waves, each one propagating at a different small angle θ, so that the amplitude
adds constructively within the range |x| < ∆x and destructively out of it. By the
uncertainty principle that results from the Fourier analysis and applies to this case,

∆(kθ)∆x ≳ 1 . (2.104)

That is, to confine a beam inside a width of ∆x, it requires a distribution of plane
waves in an angular spreading of at least λ/2π∆x. The angular spreading means that
the beam will eventually diverge with an angle ∆θ.

2.3.5.2 Fresnel integrals and beam propagation

Let us now superpose plane waves in a way to form a beam. Each partial wave
propagates under some angle θ with respect to the z-axis and has an amplitude
A(θ)dθ, so that the resulting wave (omitting the harmonic temporal variation) is,

ψ(x, z) =

∫
dθA(θ)eıkx sin θ+ıkz cos θ . (2.105)

In the so-called paraxial approximation, A(θ) is significant only within a small angular
interval close to zero. This means that, according to Eq. (2.104), the transverse
dimension of the beam is large in comparison to the wavelength. Expanding the
trigonometric functions up the order θ2,

ψ(x, z) ≃
∫
dθA(θ)eıkxθ+ıkz(1−θ2/2) = eıkz

∫
dθA(θ)eıkxθ−ikzθ2/2 . (2.106)
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This wave can be considered as a plane wave, eıkz, modulated by the integral of
(2.106). The expression (2.106) completely describes the propagation of the wave,
provided that the wave is known at some point, say z = 0. In fact, at z = 0, the
expression (2.106) for ψ0(x) ≡ ψ(x, 0) is a Fourier transform, whose inverse yields the
angular distribution,

A(θ) =
k

2π

∫
dξψ0(ξ)e

−ıkξθ . (2.107)

Substitution of A(θ) back into Eq. (2.106) gives,

ψz(x) ≡ ψ(x, z) =
k

2π
eıkz

∫
dθ

∫
dξψ0(ξ)e

ı(kθx−kθξ−kzθ2/2) . (2.108)

From here on, in order to emphasize the different roles played by the transverse
coordinates x and y, we will label the axial position z as an index to the wave function.

We can first integrate over θ via a quadratic extension of the exponent. The result,

k

2π
eıkz

∫
dθeı(kθx−kθξ−kzθ2/2) =

√
k

2πız
eık(z+(x−ξ)2/2z ≡ hz(x− ξ) , (2.109)

gives us the field at the position z as an integral over ξ of the field in z = 0, ψ0(ξ). The
expression (2.109) is called impulse response, kernel, propagator, or Green’s function,
depending on the context. Carry out the integral (2.109) in Exc. 2.3.6.17.

The kernel has very simple physical interpretations: It is the field at point (x, z)
generated by a point source with unitary amplitude located in (ξ, 0). In the same time,
it is a (two-dimensional) spherical wave in a paraxial form. To see this, we write the
field of a two-dimensional spherical wave (i.e. a circular wave) with its center in (ξ, 0)
as, √

1

r
eıkr , (2.110)

where r =
√

(x− ξ)2 + z2. (Instead of 1/r as in three dimensions, the amplitude

decreases as
√

1/r in two dimensions.) Near the z-axis, we approximate r ≃ z+(x−
ξ)2/2z, and the spherical wave becomes,√

1

z
eık[z+(x−ξ)2/2z] , (2.111)

which is the same expression as hz(x−ξ) in Eq. (2.109). Note that the quadratic term
in x−ξ can become considerable in comparison with the wavelength. Eq. (2.106) now
becomes,

ψz(x) =

∫
hz(x− ξ)ψ0(ξ)dξ =

√
k

2πız
eıkz

∫
eık(x−ξ)2/2zψ0(ξ)dξ . (2.112)

We will call this integral the Fresnel integral. It is the mathematical expression of the
Huygens principle: The field in (x, z) is the sum of all spherical waves centered on all
previous points (ξ, 0) weighed with the respective field amplitude ψ0(ξ) [1].

The expressions (2.106) and (2.112) represent two equivalent ways to calculate
wave propagation. Eq. (2.106) calculates the wave from the angular distribution of
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its plane wave components. When the angular distribution is of Hermite-Gaussian
type, a Gaussian beam results. In contrast, Eq. (2.112) computes the wave at a point
z from the field at an initial point z = 0. This is the traditional theory of Fresnel
diffraction. Here, also a Gaussian beam results when ψ0 is Hermite-Gaussian.

To deepen our understanding of beam propagation let us introduce the important
concept of near field and far field. By ’near field’ we mean a distance z sufficiently
small to be allowed to neglect the quadratic term in the exponent of Eq. (2.106),

kθ2z ≪ 1 . (2.113)

Then the near field, in zero-order approximation, is precisely the field at z = 0
multiplied with propagation phase factor eıkz,

ψz(x) ≃ eıkz
∫
dθA(θ)eıkzθ = eıkzψ0(x) , (2.114)

where the second equation follows from Eq. (2.107). Let us now examine the first-
order correction and define ’near’ more precisely.

The question is, what is the maximum angle of θ allowed in (2.113)? It is not π/2,
but rather, it is the range of angles over which A(θ) is significantly different from
zero. This angular range ∆θ is related to the range of transverse distance ∆x via the
Fourier transform (2.104), so that,

π∆x2

λ
≫ z/2 . (2.115)

The quantity on the left side, called the Rayleigh range, is the demarcation between
the near and far field regimes. A simple physical interpretation for this quantity will
be given below.

Let us now investigate the ’far field’ regime of large z having a closer look at
Eq. (2.112). When ψ0 is confined to ∆x, and if z is sufficiently large for the quadratic
factor to be,

kξ2/2z ≪ 1 , (2.116)

or
π∆x2

λ
≪ z , (2.117)

then it can be ignored, and the integral becomes,

ψ(x, z) ≃
√

k

ı2πz
eık(z+x2/2z)

∫
e−ıkxξ/zψ0(ξ)dξ . (2.118)

We see that the amplitude of the far field is given by the amplitude of the Fourier
transform of the field at z = 0 except for a quadratic phase factor kx2/(2z) 5

Let us go back to the near field and calculate the first-order correction. For small
z = ∆z, we can expand the exponent in equation (2.106),

ψz(x) ≃ eık∆z

∫
dθA(θ)

(
1− ık

θ2

2
∆z

)
eıkθx (2.119)

= eık∆zψ0(x)− eık∆z ık∆z

2

∫
dθA(θ)θ2eıkθx .

5In fact, the phase factor can be circumvented by choosing z equal to a focal length f of a lens.
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The last integral is,∫
dθA(θ)θ2eıkθx = − 1

k2
∂2

∂x2

∫
dθA(θ)eıkθx = − 1

k2
∂2ψ0(x)

∂x2
, (2.120)

Such that close to z = 0, we get,

ψz(x) ≃ eık∆z

[
ψ(x, 0) +

ı∆z

2k

∂2ψ(x, 0)

∂x2

]
. (2.121)

Note that the first-order correction is in quadrature with the zero-order term (2.114)
(if ψ0 is real), which means that the correction is in the phase, not in the amplitude.
The second derivative can be seen as a diffusion operator 6, and it is this phase
diffusion, which is the cause of phenomenon of diffraction.

Figure 2.17: Illustration of the Rayleigh range: The distance from (0, 0) to (0, z) is z. The
distance from (0,∆x) to (0, z) is approximately z +∆x2/(2z). The difference is ∆x2/(2z).
Thus, a wave coming from (0, 0) and a wave coming from (0,∆x) will acquire a phase
difference of k∆x2/(2z) when they reach (0, z). The phase difference is equal to 1 when z
equals the Rayleigh range. The phase difference is insignificant in the far field, but significant
in the near field.

We can generalize a little more: Suppose we write ψ as a plane wave eıkz modulated
by a function with slow variation u(x, z),

ψz(x) ≡ uz(x)e
ıkz , (2.122)

then

u∆z(x)− u0(x) =
ı∆z

2k

∂2u0(x)

∂x2
. (2.123)

We derived this relation for a particular point on the z-axis, z = 0. However, there is
no particular need to choose this point, and the relationship applies to any z. Thus,
letting ∆z → 0, we get,

2ik
∂u

∂z
+
∂2u

∂x2
= 0 . (2.124)

This equation is called paraxial wave equation. It is an approximate form of the scalar
wave equation and has the same form as the Schrödinger equation for a free particle.
The equation can be generalized to three dimensions by a similar derivation:

2ık
∂u

∂z
+
∂2u

∂x2
+
∂2u

∂y2
= 0 . (2.125)

6This is because the second derivative of a Gaussian function is negative in the center and positive
in the wings, so that when added to the original function, the distribution is reduced in the center
and increased in the wings.
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The Fresnel integral is the solution of the paraxial wave equation with a boundary
condition for ψ at z = 0. We will show in Sec. ?? that a three-dimensional wave
can be constructed from two-dimensional waves [2]. The resulting Fresnel integral in
three dimensions is,

ψz(x, y) =
eıkz

ıλz

∫
eık(x−ξ)2/2zeık(y−η)2/2zψ0(ξ, η)dξdη , (2.126)

where ψ0(x, y) is the distribution of the field amplitude at z = 0. Note that, as
required by energy conservation, in three dimensions the field decays like 1/z and not
like

√
1/z, as it does in two dimensions. Note also that the pulse response in three

dimensions is essentially the product of two two-dimensional pulse responses.

2.3.5.3 Application of Fresnel diffraction theory

The Fresnel diffraction integral, Eq. (2.112), can be applied in various situations illus-
trating its use and the difference between wave optics and geometric optics. Examples
are the diffraction through a slit, the pin-hole camera, the focusing of a thin lens, etc.
[2].

Near-field diffraction (also called Fresnel diffraction) and far-field diffraction (also
called Fraunhofer diffraction) are often distinguished by a quantity called the Fresnel
number,

F ≡ a2

zλ
, (2.127)

where a is the size of the beam (or aperture). The near field zone is defined by F ≳ 1,
whereas in the far field zone, F ≪ 1. For a Gaussian beam, letting a =

√
πw0,

we recover the Rayleigh length condition for Fresnel diffraction z ≲ zR, respectively
Fraunhofer diffraction, z ≫ zR.

2.3.6 Exercises

2.3.6.1 Ex: Waves on a rope

A string with linear mass density µ is attached at two points distant by L = 1m.
A mass of m = 1kg is attached to one end of the string that goes over a pulley, as
shown in the figure. Excited by a vibrating pin with frequency f = 1kHz the string
performs transverse vibrations with the wavelength λ = 2L.
a. Calculate the sound velocity.
b. Now the mass is replaced by a mass m′ = 4m. Calculate the new sound velocity.
c. Assuming the sound velocity, how often should the pin excite the string to observe
the third oscillation mode (three anti-nodes)?

2.3.6.2 Ex: Optical cavity

Optical cavities consist of two light reflecting mirrors. Standing light waves must
satisfy the condition that the electric and magnetic fields vanish on the mirror surfaces.
What is the frequency difference between two consecutive modes of a of length L =
10 cm?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave02.pdf
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Figure 2.18: Waves on a rope.

2.3.6.3 Ex: Waves on a rope

A string vibrates according to the equation y(x, t) = 15 sin πx
4 cm cos(30 s−1 πt).

a. What is the velocity of a string element at the position x = 2 cm at the instant of
time t = 2 s?
b. What is the propagation speed of this wave?

2.3.6.4 Ex: Violin

The length of a violin string is L = 50 cm, and its mass is m = 2.0 g. When it is
attached at the ends, the string can emit the a’-pitch (’la’) corresponding to 440Hz.
Where should a finger be placed so that the emitted sound is the c”-pitch (’do’) at
528Hz?

2.3.6.5 Ex: Sound waves

The air column inside a closed tube, filled with a gas whose characteristic sound ve-
locity is vs, is excited by a speaker vibrating at the frequency f . Gradually increasing
the frequency of the speaker one observes that the tube emits a sound at f = 440Hz
and the next time at 660Hz.
a. What is the length of the tube?
b. What is the speed of sound?

2.3.6.6 Ex: Sound in a bottle

An experimenter blows into a bottle partially filled with water producing a sound of
1000Hz. After drinking some of the water until the level decreased by 5 cm he is able
to produce a sound at 630Hz. Determine the possible values for the speed of sound
knowing that the vibration of the air column inside the bottle should have a node at
the end which is in contact with water and an anti-node at the mouth of the bottle.
Comparing the result to the known value for the speed of sound in air, what is the
excited vibration mode?

2.3.6.7 Ex: Sonic waves in a tube

The figure shows a rod fixed at its center to a vibrator. A disc attached to the end
of the rod penetrates a glass tube filled with a gas and where cork dust had been
deposited. At the other end of the tube there is a movable piston. When producing

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave07.pdf
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longitudinal vibrations at the rod, we note that for certain positions of the movable
piston, the cork dust forms a pattern of node and anti-nodes. Knowing for one of
the positions of the piston the distance d between the anti-nodes and the frequency
f of the vibration, show that the speed of sound in the gas is v = 2fd. This is called
Kundt’s method for determining the speed of sound in a gas.
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Exercícios 

1 - Uma corda vibra de acordo com a equação y(x,t) = 15sen ( ) ( ),t30cos.4
x ππ  

sendo x e y medidos em cm e t em segundos.  

a) Qual é a velocidade de um elemento da corda na posição x = 2 cm no 

instante t = 2 s?  

b) Qual é a velocidade de propagação desta onda? 

2 - Discuta as evidências experimentais (que você observa) que nos leva a 

admitir que a velocidade do som na faixa audível deve ser a mesma para 

todos os comprimentos de onda. 

3 - Suponha que no efeito Doppler com o som, a fonte e o observador estejam 

ambos em repouso, mas o meio está se movendo com relação a este 

referencial. Haverá alguma variação na freqüência recebida pelo 

observador? 

4 - Na Fig. 10.13, uma haste está fixa pelo centro a um vibrador. Um disco 

preso à extremidade da haste penetra num tubo de vidro onde foi 

espalhado pó de cortiça. Na outra extremidade do tubo existe um pistão 

móvel. Produzindo-se vibrações longitudinais na haste, observar que para 

determinadas posições do pistão móvel, o pó de cortiça forma um 

conjunto de nós e anti-nós. Se para uma destas posições do pistão, 

conhecermos a distância d entre os anti-nós e a freqüência f de vibração, 

mostre que a velocidade do som no gás é v = 2fd. Este é o método de 

Kundt para determinar a velocidade do som. 

 

 

 

Fig. 10.13 

 

d anti-nós 

Figure 2.19: Sonic waves in a tube.

2.3.6.8 Ex: Sound filter

A tube can act as an acoustic filter discriminating various sound frequencies crossing
it from its own frequencies. A car muffler is an application example.
a. Explain how this filter works.
b. Determine the ’cut-off’ frequency below which sound is not transmitted.

2.3.6.9 Ex: Snell’s law

Derive Snell’s law from Huygens principle.

2.3.6.10 Ex: Surface gravitational waves, capillary waves

Dependence of the propagation velocity on the height of the water column.

2.3.6.11 Ex: Propagating standing wave

Consider two propagating waves E±(x, t) with equal amplitudes and slightly different
frequencies ω± propagating in opposite directions along the x-axis.
a. Show that, approximating k+ ≃ k−, at each instant of time the interference pattern
along the x-axis forms a standing wave.
b. Determine the group velocity of this wave.

2.3.6.12 Ex: Mach-Zehnder and Michelson-interferometer

Interferometers are devices that allow the comparison of distances via the propagation
time of waves taking different paths. The interferometers outlined in the figures are
based on beam splitters that divide and recombine a wave described by In(x, t) =
An cos(kx − ωt). Determine the amplitude of the signal at the position of the beam
splitter recombining the waves as a function of a variation ∆x = 4π/k of the length
of the second interferometer arm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave11.pdf
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Figure 2.20: Mach-Zehnder and Michelson-interferometer.

2.3.6.13 Ex: Multiple interference in optical cavities

An optical beam splitter is a mirror with partial transmission and partial reflection,

Er(x, t) = ±rE0(x, t) , Et(x, t) = tE0(x, t) .

The reflection signal depends on the direction of incidence, because reflection at a
denser medium introduces a phase shift of π. Using this rules derive for a set of two
mirrors r1 and r2 separated by a distance L the field Ecav between the mirrors as a
function of the wave vector of the incident field Ein. Also calculate the amplitudes of
the transmitted and reflected light. Calculate the phase shifts between the transmitted
(reflected) light and the incident light. Interpret the results.

Figure 2.21: Optical cavity.

2.3.6.14 Ex: Double slit

Calculate the interference pattern behind a double slit.

2.3.6.15 Ex: Spherical waves

Show that spherical waves given by Y (r, t) = Y0

kr sin(kr − ωt) satisfy the 3D wave
equation. Use Cartesian coordinates.

2.3.6.16 Ex: Interference in spherical waves

Two spherical waves are generated at positions r± = ±Rêz. Determine surfaces of
destructive interference for these waves.

2.3.6.17 Ex: Green’s function

Calculate the integral Eq. (2.109).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FuncaoGreenBeam.pdf
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2.4 Fourier analysis

Every periodic function f(ξ) = f(ξ+2π) can be decomposed into a series of harmonic
vibrations. This is the Fourier theorem,

f(ξ) =
a0
2

+

∞∑
n=1

(an cosnξ + bn sinnξ) . (2.128)

To determine the coefficients, we calculate,∫ 2π

0

f(ξ)dξ =

∫ 2π

0

[
a0
2

+

∞∑
m=1

am cosmξ + bm sinmξ

]
dξ = πa0 (2.129)

∫ 2π

0

f(ξ) cos kξdξ =

∫ 2π

0

[
a0
2

+

∞∑
m=1

am cosmξ + bm sinmξ

]
cosnξdξ = πan

∫ 2π

0

f(ξ) sin kξdξ =

∫ 2π

0

[
a0
2

+

∞∑
m=1

am cosmξ + bm sinmξ

]
sinnξdξ = πbn ,

using the rules,∫ 2π

0

cosnξ cosmξdξ =

∫ 2π

0

sinnξ sinmξdξ = πδn,m and

∫ 2π

0

cosnξ sinmξdx = 0 .

(2.130)
We can use these equations to calculate the Fourier expansion. To simplify the cal-
culations, it is useful to consider the symmetry of the periodic function, since if
f(ξ) = f(−ξ), we can neglect all the coefficients bn, and if f(ξ) = −f(−ξ), we can
neglect the coefficients bn

7

Example 16 (Frequency spectrum and low-pass filter):

• Show the spectrum of a rectangular signal on an oscilloscope and on an
spectrum analyzer.

• Show the same spectrum filtered by a low pass filter.

.

7Alternatively we can write the theorem as,

f(ξ) =
∞∑

n=−∞
dne

ınξ ,

determining the coefficients as,∫ π

−π
f(ξ)e−ıkξdξ =

∫ π

−π
f(ξ)e−ıkξdξ

∞∑
n=−∞

dne
ınξdξ = 2πdn ,

with,
2dn = an − ıbn for n ≥ 0 and 2dn = a−n + ıb−n for n < 0 .
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2.4.1 Expansion of vibrations

Interpreting ξ ≡ ωt as time, we can apply the Fourier theorem (2.128) on temporal
signals, S(t) = f(ωt), where ω is the angular frequency,

S(t) = f(ωt) =
a0
2

+

∞∑
n=1

(an cosnωt+ bn sinnωt) , (2.131)

with,

a0 =
ω

π

∫ 2π/ω

0

S(t)dt and an =
ω

π

∫ 2π/ω

0

S(t) cosnωtdt (2.132)

and bn =
ω

π

∫ 2π/ω

0

S(t) sinnωtdt .

The representation of the coefficients an and bn as functions of the number n is
called harmonic spectrum. As we mentioned earlier, the spectrum of a sound is what
determines the timbre. The total harmonic distortion is defined by,

k ≡
∑∞

n=2(an + bn)∑∞
n=1(an + bn)

. (2.133)

Radiofrequency circuits such as HiFi amplifiers are characterized by their transmis-
sion fidelity, that is, the absence of harmonic distortion in the amplification of each
harmonic coefficient.

2.4.1.1 Expansion of a triangular signal

We consider a triangular signal given by 8,

S(t) =

{
ωt

π − ωt
for

0 < ωt < π
2

π
2 < ωt < π

. (2.134)

We calculate the coefficients, a0 = 0, because the signal is symmetric about the t-axis
(it has no offset), and an = 0, because the signal has the symmetry S(t) = −S(−t).
Also,

bn =
2ω

π

∫ π/2ω

0

ωt sinnωtdt+
2ω

π

∫ π/ω

π/2ω

(π − ωt) sinnωtdt =
4

π

sin 1
2πn

n2
, (2.135)

with the consequence,

S(t) =
4

π

∑
n=1,3,...

(−1)(n−1)/2

n2
sinnωt . (2.136)

8Note that the function S(t) = π
2
−
(
π
2
− ωt

)
cosωt
| cosωt| , which describes the same triangular signal,

it is easier to program in numerical softwares.
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2.4.2 Theory of harmony

Non-linearities in oscillating systems can excite harmonic frequencies fn, that is,
multiples of the fundamental frequency fn = (n+ 1)f . These are the components of
the Fourier series.

All musical instruments produce harmonics. This is what makes the timbre of the
instrument. When we play several notes together, we perceive the octave interval as
pleasant. This is, because all the harmonics of a pitch and of its octave coincide.

• harmonic pitch, well-tempered chromatic scale, flat ♭, sharp ♯, ♮, musical clef,
tuning fork fa′ = 440Hz

1

Cello

Violin

I
G

4
4

4
4

C
ˇ ˇ ˇ ˇ ˇ

A

ˇ ˇ >
c

ˇ ˇ ˇ ˇ ˇ
a

ˇ ˇˇ
ˇ ˇ >

c’

ˇ ˇ ˇ ˇ
ˇ ˇ ˇ ˇ ˇ

a’

ˇ ˇ >
c”

ˇ ˇ ˇ ˇ ˇ

a”

ˇ ˇ
>

Figure 2.22: (code) Ladder of pitches over 3 octaves. Pitches can be generated in MATLAB.

A sample program can be downloaded by clicking on the link.

In the well-tempered tonality the interval of a octave is divided into 12 intervals,

n ∈ [a, a#, h, c, c#, d, d#, e, f, f#, g, g#] . (2.137)

Defining normal tuning as,

fa = 440Hz , (2.138)

the pitches correspond to the frequencies,

fn = 2n/12fa . (2.139)

For example, we calculate the frequency of the ’d’,

fd = 2−7/12fa = 391.9954Hz . (2.140)

Thus, all notes are logarithmically equidistant:

lb fn+1 − lb fn = lb (2(n+1)/12fla)− lb (2n/12fla) = 1 (2.141)

fn+1

fn
=

2(n+1)/12fla
2n/12fla

= 21/12 . (2.142)

Why are there just 12 pitches? Several instruments have more than one resonator
emitting sound, e.g. the violoncello has 4 strings, c, g, d’, and a’. Each string is
detuned by a quint from the next string, that is,

3fc = 2fg and 3fg = 2fd′ and 3fd′ = 2fa′ . (2.143)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Musik.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Musik.m
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Each string has its own series of harmonics. The timbre of the instrument appears
more pleasant, when the harmonics of the various strings coincide. Let us now check,
whether our definition of logarithmically equidistant pitches satisfies this condition,

3fd = 3 · 2−7/12fa = 2.0023fa ̸= 2fa . (2.144)

Thus, harmonic tuning is not perfect, but quite close to the well-tempered tuning. In
Exc. 2.4.6.5 we show that, nevertheless, the discrepancy is able to produce nasty beat
notes.

The guitar, which is tuned in quarts,

4fc = 3ffa , (2.145)

has the same problem 9,

4fc = 4 · 2−5/12ff = 2.9966ff ̸= 3ff . (2.146)

Resolve the Excs. 2.4.6.6, 2.4.6.7 and 2.4.6.8.

2.4.3 Expansion of waves

Interpreting ξ ≡ kx as position, we can apply the Fourier theorem (2.128) to standing
waves, Y (x) = f(kx), where k = 2π/k is the wavevector.

2.4.4 Normal modes in continuous systems at the example of
a string

We will now apply the Fourier expansion to calculate the normal modes of a vibrating
string. Depending on which mode of oscillation is excited, the displacement of the
string is given by,

Yn(x, t) = (An cosωnt+Bn sinωnt) sin
ωnx
c , (2.147)

where ωn = nπc/l is the frequency of the normal mode. An arbitrary vibration can
be decomposed as superpositions of these modes,

Y (x, t) =
∑
n

Yn(x, t) . (2.148)

As an initial condition we assume that the string is at a position Y (x, 0) = Y0(x) with
the velocity V (x, 0) = V0(x) at all points. Then,

Y0(x) =
∑
n

Yn(x, 0) =
∑
n

An sin
ωnx
c (2.149)

and V0(x) =
∑
n

d

dt
Yn(x, 0) =

∑
n

ωnBn sin
ωnx
c .

9Include Matlab sound examples here!
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We find the amplitudes by calculating the integrals,

2

l

∫ l

0

Y0(x) sin
ωnx
c dx =

2

l

∑
m

Am

∫ l

0

sin mπx
l sin nπx

l dx = An (2.150)

2

l

∫ l

0

V0(x) sin
ωnx
c dx =

2

l

∫ l

0

∑
m

ωnBm sin mπx
l sin nπx

l dx = ωnBn .

We now assume that the rope is initially excited by a triangular deformation, that
is, we pull the rope in its middle up to a distance d and let go. That is, the initial
conditions are given by,

V0(x) = 0 and
π

2d
Y0(x) =

{
πx
l

π(l−x)
l

for
0 < πx

l < π
2

π
2 <

πx
l < π

. (2.151)

We can compare this function with the triangle function Eq. (2.134) and make the
same Fourier expansion as in (2.136),

π

2d
Y0(x) =

4

π

∑
n=1,3,...

(−1)(n−1)/2

n2
sin nπx

l . (2.152)

Comparing this expansion with (2.149), we find Bn = 0 and,

∑
m

Am sin ωmx
c = Y0(x) =

2d

π

4

π

∑
n=1,3,...

(−1)(n−1)/2

n2
sin nπx

l . (2.153)

yielding for odd coefficients m = 1, 3, ..,

An =
8d

n2π2
(−1)(n−1)/2 . (2.154)

Thus, the vibration of the string is completely described by,

Y (x, t) =
8d

π2

∑
n=1,3,...

(−1)(n−1)/2

n2
cosωnt sin

ωnx
c . (2.155)

The energy is the sum of the energies of all normal modes,

E =
∑

n=1,3,...

m

4
ω2
nA

2
n =

∑
n=1,3,...

m
4

(nπc
l

)2( 8d

n2π2

)2

=
∑

n=1,3,...

m
16d2c2

n2π2l2
=

2md2c2

l2
,

(2.156)

knowing
∑

n=1,3,...
1
n2 = π2

8 .

2.4.5 Waves in crystalline lattices

The sound may propagate in a crystalline lattice, for example a metal or a crystal,
by means of longitudinal or transverse vibrations. To understand the propagation of
longitudinal vibrations in a monoatomic lattice, we consider the model of a chain of
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N masses coupled by springs. The treatment for transverse vibrations is analogous.
As we have shown in previous sections, the movement of each mass is described by
the differential equation,

ẍn = ω2
0(xn − xn−1) + ω2

0(xn − xn+1) , (2.157)

with n = 1, .., N . Making the ansatz xn = Ane
−ıωt, we obtain the characteristic

equation,

ω2An = ω2
0(An −An−1) + ω2

0(An −An+1) . (2.158)

When we hit one of the oscillators of a linear chain, we excite a wave that prop-
agates along the chain. Therefore, it is reasonable to guess An = Aeınka for the
displacements of the oscillators, where a ≡ xn+1 − xn is the lattice constant. We
obtain,

ω2 = ω2
0(1− e−ika) + ω2

0(1− eıka) = 2ω2
0(1− cos ka) = 4ω2

0 sin
2 ka

2
. (2.159)

The dispersion relation is shown in Fig. 2.23. Obviously, in the limit of long waves,
ka≪ 1, the relation can be approximated by,

ω = 2ω0

∣∣∣∣sin ka2
∣∣∣∣ ≃ ω0ka ≡ ck , (2.160)

where c is the propagation velocity of the wave. This relation is linear, thus repro-
ducing the situation of acoustic waves.
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Figure 2.23: (code) Dispersion relation of a one-dimensional crystalline lattice consisting of

20 atoms.

The displacements of individual oscillators are now,

xn(t) = na+Aeınka−ıωt . (2.161)

We need now to discuss, what are the possible values for k. First, since by adding 2π to
the value ka we get the same result, we may concentrate on the region −π < ka < π,
called the first Brillouin zone. And since the crystal is symmetric (we can reverse the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoCristal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoCristal.m
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order of all oscillators), we can assume cyclic boundary conditions, eınka = eı(N−n)ka,
such that (N−2n)ka/2π is an arbitrary integer number for any n, for example n = 0,

k =
2π

Na
· ℓ , (2.162)

for ℓ ∈ N. To stay within the Brillouin zone, we set ℓ = −N
2 , ..,

N
2 . That is, we have

N possible values, which corresponds to just half the number of degrees of freedom.
Let us consider particular solutions. In the center of the Brillouin zone, k = 0 we

have,
xn(t) = na+Aeıωt , (2.163)

which corresponds to an in-phase oscillation of all oscillators. On the edge of the
Brillouin zone, k = ±π/a,

xn(t) = na+A(−1)neıωt , (2.164)

which corresponds to a movement, where consecutive oscillators oscillate in anti-
phase.

2.4.5.1 Waves in diatomic crystalline lattices

Many lattices are diatomic, that is, made of two species of atoms with different
masses. For example, the NaCl salt crystal is a lattice alternating Na+ and Cl− ions.
In analogy with the monoatomic lattice we establish the equations of motion,

ẍn = −ω2
x(xn − yn−1)− ω2

x(xn − yn) (2.165)

ÿn = −ω2
y(yn − xn+1)− ω2

y(yn − xn) ,

with ωx,y ≡
√
k/mx,y. Inserting the ansätze xn = Aeı(nka−ωt) and yn = Beı(nka−ωt),

we find the equations,

−ω2A = −ω2
x(2A−Be−ıka −B) (2.166)

−ω2B = −ω2
y(2B −Aeıka −A) ,

or, (
2ω2

x − ω2 −ω2
x(1 + e−ika)

−ω2
y(1 + eıka) 2ω2

y − ω2

)(
A

B

)
= 0 . (2.167)

The characteristic equation is,

0 = det M̂ = (2ω2
x − ω2)(2ω2

y − ω2)− ω2
x(1− e−ıka)ω2

y(1− eıka) , (2.168)

with the solution,

ω2 = ω2
x + ω2

y ±
√
ω4
x + ω4

y + 2ω2
xω

2
y cos ka . (2.169)

For ka≪ 1 we can approximate,

ω2 ≃ ω2
x + ω2

y ±
√

(ω2
x + ω2

y)
2 − ω2

xω
2
yk

2a2 (2.170)

≃ 2(ω2
x + ω2

y) , ω2
xω

2
yk

2a2 .
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The first eigenvalue is called the optical branch and the second the acoustic branch.
The optical branch corresponds to an anti-phase motion of the atoms of the species
x and y. This motion can be excited by light fields. The acoustic branch corresponds
to an in-phase motion of the atoms.

In contrast, for ka ≃ ±π/a we obtain,

ω2 = ω2
x , ω2

y . (2.171)

In these solutions either atom x oscillates while y stays at rest, or the opposite.
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Figure 2.24: (code) Dispersion relation in a one-dimensional lattice showing in blue the

optical branch and in green the acoustic branch.

2.4.6 Exercises

2.4.6.1 Ex: Fourier expansion

Expand the function f(ξ) = sin3 ξ in a Fourier series.

2.4.6.2 Ex: Fourier expansion of sea waves

Surface waves on the sea are often better described by the function f(x, t) = (kx −
2nπ)2 inside the intervals x ∈ [(2n − 1)π/k, (2n + 1)π/k] com n ∈ N. Expands the
wave in a spatial Fourier series. Use the formula

∫
z2 cos(bz)dz = 1

b3 [(b
2z2−2) sin bz+

2bz cos bz].

Figure 2.25: (code)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoRamos.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoRamos.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FourierQuadrado.m
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2.4.6.3 Ex: Fourier expansion of a rectified signal

An alternating electric current can be turned into a signal of half-cycles, f(t) =
| cos ωt

2 |, by a diode rectifier bridge. Expand this signal into a temporal Fourier series.

Use the formula
∫
cos(az) cos(bz)dz = sin[(a−b)z]

2(a−b) + sin[(a+b)z]
2(a+b) .

Figure 2.26: Fourier expansion of a rectified signal.

2.4.6.4 Ex: Action of a low pass filter on a spectrum

One method of creating a sinusoidal signal in electronics consist in first creating a
rectangular signal via a switching circuit and then pass this signal through a low-
pass filter by cutting off the harmonics. Simulate this procedure using the Fourier
transform method starting from the rectangular signal S(t) = sinωt/| sinωt| with
ω/2π = 1kHz and using a low pass filter, such as F (ω) = 1/

(
1 + (ω/ωg)

2
)
, where

the cut-off frequency is, ωg/2π = 1kHz. Evaluate the harmonic distortion of the
rectangular signal and the filtered signal.

2.4.6.5 Ex: Tuning a violin

What would be the beat frequency between the pitches 3fc′ and 2fg′ if the strings
were tuned logarithmically equidistant.

2.4.6.6 Ex: String instruments

Imagine a string instrument with 12 strings tuned in quints. How far would be the
highest string from a harmonic of the lowest one.

2.4.6.7 Ex: String instruments

Prepare a list comparing the harmonics up to ninth order in the harmonic and in the
tempered scale.

2.4.6.8 Ex: Frequency beating of sound waves

To tune a violin a musician first tunes the a-string (’la’) at fa = 440Hz and then plays
two neighboring strings, paying attention to the frequency beats. When playing the
a- and the e-string (’mi’), the violinist hears a beat frequency of 3Hz, and he notes
that this frequency increases as the tension of the e-string increases. (The e-string is
tuned to fe = 660Hz.)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05c.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion06.pdf
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a. Why is there a beat when the two strings are played simultaneously?
b. What is the vibration frequency of the e-string when the beat frequency it generates
together with the a-string is 3Hz?
c. If the tension on the e-string is 80N for a beat frequency of 3Hz, what tension
corresponds to a perfect tuning of the string?

2.4.6.9 Ex: Frequency beating of sound waves

A violinist tries to tune the strings of his instrument.
a. Comparing the a-string (’la’) to a tuning fork (νdia = 440Hz), he hears a beat
with the frequency 1Hz. By increasing the tension on the rope, the beat frequency
increases. What was the frequency of the ’a’-string before the tension increased?
b. After having adjusted the a-string the violinist wants to tune the d-string (’re’). He
realizes that the second harmonic 3νd produces with the first harmonic of the a-string
(2νa) a beat of 1Hz. Decreasing the tension of the d-string the beat disappears. What
was the initial frequency of the d-string and by what percentage does the violinist
need to decrease the tension of the string?

2.4.6.10 Ex: Normal modes on a string

A stretched wire of mass m, length L, and tension T is triggered by two sources, one
at each end. Both sources have the same frequency ν and amplitude A, but are out of
phase by exactly 180◦ with respect to each other. (At each end there is an anti-node.)
What is the lowest possible value of ω consistent with the stationary vibrations of the
wire?

2.4.6.11 Ex: Normal modes on a string

a. Find the total vibration energy of a wire of length L fixed at both ends and
oscillating in its n-th characteristic mode with amplitude A. The tension on the wire
is T , and its total mass is M . (Suggestion: Consider the integrated kinetic energy
at the instant when the wire is straight.)
b. Calculate the total vibration energy of the same wire vibrating in the following
superposition of normal modes:

Y (x, t) = A1 sin
πx
L cosω1t+A3 sin

3πx
L cos(ω3t− π

4 ) .

You should be able to verify that it is the sum of the energies of the two modes taken
separately.

2.4.6.12 Ex: Normal modes on a string

A wire of length L is attached at both ends under a tension T . The wire is pulled
sideways by a distance h from its center, such that the rope adopts a triangular shape,
and the it is released.
a. What is the energy of the subsequent oscillations. Suggestion: Consider the work
that needs to be done against the tension to give the wire its initial deformation,
and suppose that the tension remains unchanged upon a slight increase of its length
caused by transverse the displacements.
b. How many times will the triangular shape reappear?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion10.pdf
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2.4.6.13 Ex: Waves on a rope

A string with linear mass density µ is attached at two points distant from each other
by L = 1m. A mass m = 1kg is now attached to one end of the rope that goes
through a pulley, as shown in the figure. Excited by a vibrating pin with frequency
f = 1kHz the string performs transverse vibrations with wavelength λ = 2L.
a. Calculate the propagation velocity of the wave.
b. At what frequency should the pin excite the rope to observe the third oscillation
mode (three anti-nodes)?
c. Now the mass is doubled. Calculate the new speed of sound.
d. How should the mass be chosen to obtain a fundamental mode frequency equal to
the frequency of the third mode calculated in (b)?

1. (3,0) Uma corda com densidade linear de massa µ é presa em dois pontos distantes
de L = 1 m. Uma massa m = 1 kg é fixada à uma das extremidades da corda
que passa por uma roldana, como mostra a figura abaixo. Excitada por um pino
vibrante com a frequência f = 1 kHz a corda executa vibrações transversais com o
comprimento de onda λ = 2L.

(a) Calcule a velocidade do som.

(b) Agora, a massa é substitúıda por uma massa m′ = 4m. Calcule a nova veloci-
dade do som.

(c) Assumindo esta nova velocidade do som, com qual frequência o pino deve
excitar a corda para observar o terceiro modo (três anti-nós) de oscilação?

2

Figure 2.27: Waves on a rope.

2.5 Matter waves

Quantum mechanics tells us that light sometimes behaves like particles and matter
like waves. Letting us guide by this analogy we will, in the following, guess the fun-
damental equations of motion for the propagation of matter waves from a comparison
of the respective dispersion relations of light and massive particles.

2.5.1 Dispersion relation and Schrödinger’s equation

On one hand, the propagation light is (in the vacuum) is described by the dispersion
relation ω = ck or,

ω2 − c2k2 = 0 . (2.172)

Since light is a wave it can, in the most general form, be described by a wavepacket,A(r, t) =∫
eı(k·r−ωt)a(k)d3k. It is easy to verify that the wave equation,

∂2

∂t2
A− c2∇2A = 0 , (2.173)

reproduces the dispersion relation.
On the other hand, slow massive particles possess the kinetic energy,

E =
p2

2m
. (2.174)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion11.pdf
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With de Broglie’s hypothesis that even a massive particle has wavelength, we can
try an ansatz 10 for a wave equation satisfying the dispersion relation (2.174). From
Planck’s formula, E = ℏω, and the formula of Louis de Broglie, p = ℏk, describ-
ing the particle by a wavepacket not being subject to external forces ψ(r, t) =∫
eı(k·r−ωt)ϕ(k)d3k, it is easy to verify that the differential equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2

)
ψ , (2.175)

reproduces the dispersion relation. If the particle is subject to a potential, its total
energy is E = p2/2m + V (r, t). This dispersion relation corresponds to the famous
Schrödinger equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∆+ V (r, t)

)
ψ . (2.176)

Since we accept that light particles and lenses behave like a wave, to calculate their
trajectories, we must determine the potential landscape V (r) in which this particle
moves before solving the Schrödinger equation. This is the role of wave mechanics,
which is one of the formulations of quantum mechanics.

2.5.1.1 Scalar waves and vectorial waves

The electromagnetic field is a vector field, since E⃗(r, t) and B⃗(r, t) are vectors. There-
fore, it has a polarization. In contrast, the field of matter ψ(r, t) is a scalar field
and therefore does not have the degree of freedom of polarization, in analogy with
sound. This has important consequences, for example, the fact that two collinear light
fields with orthogonal polarizations do not interfere has no analogue with matter wave
fields.

2.5.2 Matter waves

Broglie’s formula assigns a wave to each body, The wavelength decreases as the veloc-
ity of the particle grows. The necessity to describe a massive particle as a matter wave
depends on the relationship between its Broglie wavelength and other characteristic
quantities of the system under consideration. If the wavelength is large, we expect
typical interference phenomena for waves; if the wavelength is small, the particle will
behave like a mass, which is perfectly localized in space and incapable of interfering.

Characteristic features of the system may be, for example, the presence of a narrow
slit diffracting the Broglie wave of an atom or an electron passing through it. Another
characteristic feature is the average distance between several atoms. In fact, when an
atomic gas is so cold, that is, composed of atoms so slow, that the Broglie wavelength
of the atoms is longer than the average distance, then the atoms interfere with each
other. In the case of bosonic atoms, the interference will be constructive, resulting
in a matter wave of gigantic amplitude. This phenomenon is called Bose-Einstein
condensation 11.

10Kick, work hypothesis, guess.
11See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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Before calculating the temperature required for this phenomenon to happen, we
need to inform the reader, that the interatomic distance can not be compressed arbi-
trarily, because below distances of typically d̄ = 1 µm, the gas tends to form molecules.
For the Broglie waves of different atoms to interfere, the wavelength must be longer.
The average velocity of the atoms in a gas of temperature T is given by,

m

2
v̄2 =

kB
2
T .

Therefore, the temperature of the gas must be,

T =
mv̄2

kB
=

p̄2

kBm
=

ℏ2k̄2

kBm
=

4π2ℏ2

kBmλ2dB
<

h2

kBmd2
.

For rubidium atoms of mass m = 87u we calculate T < 200 nm.
The development of powerful experimental techniques allowed in 1995 the cooling

of rubidium gases down to such low temperatures and the experimental realization
of Bose-Einstein condensates, that is, matter waves made up of 106 atoms. See
Exc. 2.5.3.1.

2.5.3 Exercises

2.5.3.1 Ex: Interference in Bose-Einstein condensates

Calculate the periodicity of the interference pattern of two Bose-Einstein condensates
supposed to have intrinsic temperatures T = 0 interpenetrating at a relative velocity
v = 1mm/s.

2.6 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de F́ısica Básica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_CondensadosBoseeinstein.pdf
http://isbnsearch.org/isbn/978-8-521-20801-2


86 CHAPTER 2. WAVES



Chapter 3

Gravitation

3.1 Planetary orbits

3.1.1 Kopernicus’ laws

Nicolaus Copernicus published in 1543 his book De revolutionibus orbium coelestium
in which he states:

1. The planetary orbit is a circle with epicycles.

2. The Sun is approximately at the center of the orbit.

3. The speed of the planet in the main orbit is constant.

Despite being correct in saying that the planets revolved around the Sun, Coper-
nicus was incorrect in defining their orbits. It was Kepler who correctly defined the
orbit of planets as follows:

1. The planetary orbit is not a circle with epicycles, but an ellipse.

2. The Sun is not at the center but at a focal point of the elliptical orbit.

3. Neither the linear speed nor the angular speed of the planet in the orbit is
constant, but the area speed is constant.

3.1.2 Kepler’s laws

Kepler’s laws of planetary motion, published by Johannes Kepler between 1609 and
1619, describe the orbits of planets around the Sun:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

3. The square of a planet’s orbital period is proportional to the cube of the length
of the semi-major axis of its orbit.

The elliptical orbits of planets were indicated by calculations of the orbit of Mars.
From this, Kepler inferred that other bodies in the Solar System, including those
farther away from the Sun, also have elliptical orbits. The second law helps to establish

87
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that when a planet is closer to the Sun, it travels faster. The third law expresses
that the farther a planet is from the Sun, the slower its orbital speed, and vice versa.
Isaac Newton showed in 1687 that relationships like Kepler’s would apply in the Solar
System as a consequence of his own laws of motion and law of universal gravitation.
Do the Excs. 3.1.3.1, 3.1.3.2, and 3.1.3.3.

The eccentricity of the orbit of the Earth makes the time from the March equinox
to the September equinox, around 186 days, unequal to the time from the September
equinox to the March equinox, around 179 days. A diameter would cut the orbit into
equal parts, but the plane through the Sun parallel to the equator of the Earth cuts
the orbit into two parts with areas in a 186 to 179 ratio, so the eccentricity of the
orbit of the Earth is approximately,

e ≈ π

4

186− 179

186 + 179
≈ 0.015 , (3.1)

which is close to the correct value (0.016710218). The accuracy of this calculation
requires that the two dates chosen be along the elliptical orbit’s minor axis and that
the midpoints of each half be along the major axis. As the two dates chosen here are
equinoxes, this will be correct when perihelion, the date the Earth is closest to the
Sun, falls on a solstice. The current perihelion, near January 4, is fairly close to the
solstice of December 21 or 22.

3.1.3 Exercises

3.1.3.1 Ex: Kepler orbits

The moon moves in a good approximation on a circular path with radius R =
384000 km around the Earth. Assume that the Earth’s mass would suddenly de-
crease.
a. How much would the mass have to decrease so that the moon could escape the
Earth?
b. How would the moon’s orbit change if the mass decreased by a factor of 3, 2 or
1.5?

3.1.3.2 Ex: Kepler orbits of missiles

Consider an object of mass m ≪ M& which is launched at an initial velocity v0 (at
an angle θ relative to the Earth’s surface). We neglects any friction.
a. What possible trajectories can the object move on? How does the type of trajectory
depend on the conservation parameters?
b. Calculate the maximum speed that the object may have to move on a closed
trajectory. Does this speed depend on θ? Does the projectile always fall back to
Earth when the path is closed?
c. Neglecting the Earth’s rotation calculate the flight distance of the projectile above
the Earth’s surface for velocities below the above-mentioned limit velocity.
Help: Set the center of the Earth in the focal point of the Kepler orbit.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit02.pdf
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3.1.3.3 Ex: Halley’s Comet

The comet Haley moves like a planet on an elliptical orbit around the sun. Its orbital
period is 75 years and the closest distance to the sun is 0.5AE. (One astronomical
unit is the distance from the Earth to the sun, assuming that the orbit of the Earth
around the sun is a circular orbit.)
a. Use this information to calculate the value for the major semi-axis a and the minor
semi-axis b of the comet’s orbit in astronomical units. Use this to determine the
eccentricity ε of the orbit.
b. What is the maximum distance of the comet from the sun?
c. Calculate the minimum and maximum speed of the comet on its orbit.

3.2 Newton’s law

Newton’s law of gravity about the force between two massive bodies,

F = −∇V (r) . (3.2)

can be deduced from a conservative central potential,

V (r) =
γNMm

r
. (3.3)

IfM =M& is the mass of the Earth, a test massm close to the surface (r& ≈ 6378 km)
will be accelerated by,

g =
F

m
= − ∂

∂r

γNM&

r

∣∣∣∣
r=R

&

=
γNM&

R2
&

= 9.81m/s2 . (3.4)

with Newton’s constant,

γN = 6.67 · 10−11 m3/kg s2 . (3.5)

3.2.1 Cosmic velocities

3.2.1.1 First cosmic velocity

The first cosmic velocity is defined as the velocity that a body must have in order to
circle the center of the Earth on an orbit with the Earth’s radius. We calculate this
velocity from the condition that the centripetal force be equal to the centrifugal force,

mv21
r&

= γN
mM&

r2
&

⇒ v1 =

√
γNM&

r&
, (3.6)

yielding v1 ≈ 7.91 km/s = 2.84 · 104 km/h. In Exc. 3.2.3.1 we estimate the mass of
the milky way galaxy from the velocity of the sun and its distance from the galaxy’s
center. In Exc. 3.2.3.2 we compare the heights of stationary orbits around the Earth
and the moon.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit03.pdf
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Example 17 (Angular velocity of a satellite): Here, we calculate the ve-
locity of a satellite on a circular orbit at a height of 400 km above the Earth’s
surface,

v1 =

√
γNM&
r& + h

,

yielding v1 ≈ 7.66 km/s = 2.76 · 104 km/h.

3.2.1.2 Escape velocity

The escape velocity or second cosmic velocity is the velocity that a body must have to
be able to leave the Earth’s gravity field completely. We calculate the second cosmic
speed for the Earth from,

Ekin =
m

2
v22 = final− initial energy in the limit final energy → 0 . (3.7)

Hence,

Ekin = 0−
(
−γN

mM&

r&

)
⇒ v2 =

√
2γNM&

r&
= v1

√
2 , (3.8)

yielding v2 ≈ 11.2 km/s = 4.03 ·104 km/h. Apparently, the cosmic velocities v1 and v2
are related. In Exc. 3.2.3.3 and 3.2.3.4 we calculate cosmic velocities for, respectively,
Earth and the comet Tschurjumow-Gerasimenko.

Example 18 (Escape velocity for a satellite): The escape velocity for a satel-

lite that is in a 400 km high orbit above the Earth’s surface is v2 ≈ 10.83 km/s =

3.90 · 104 km/h.

3.2.2 Deriving Kepler’s laws from Newton’s laws

3.2.2.1 Kepler’s first law

The orbits are ellipses, with focal points F1 and F2 for the first planet and F1 and F3
for the second planet. The Sun is placed at focal point F1. The two shaded sectors
A1 and A2 have the same surface area and the time for planet 1 to cover segment
A1 is equal to the time to cover segment A2. The total orbit times for planet 1 and
planet 2 have a ratio (a1/a2)

3/2.

Figure 3.1: Illustration of Kepler’s three laws with two planetary orbits.
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3.2.2.2 Kepler’s second law

The area swept by the planet’s trajectory in infinitesimal time steps is,

A(t, t+ dt) = 1
2 |r(t)× ṙ(t)|dt = L

2mdt .

Since central potentials preserve angular momentum,

L̇ =
d

dt
mr× p = m(ṙ× ṙ+ r× r̈) = mr× r̈ = −r×∇V (r) = −r× ∂V (r)

∂r
êr = 0 ,

for a given time difference dt = t1−t0 the swept area is the same. Angular momentum
is a constant of motion, L̇ = 0, for central potentials.

3.2.2.3 Kepler’s third law

3.2.3 Exercises

3.2.3.1 Ex: Mass of the Milky Way

Estimate the total mass of our galaxy (the milky way) using the parameters of the
orbits of the sun (and the solar system) around the center of the galaxy. Assume that
the major part of the mass of our galaxy is in the form of a uniform sphere (bulge).
The speed of the sun on its way around the center of the galaxy is approximately
v = 250 km/h, the distance of the sun from the center of the galaxy is approximately
r = 28000 ly (light years). To how many stars like our sun does this correspond to?

3.2.3.2 Ex: Gravitation on Earth and Moon

How high are the orbits of ’geo-stationary’ and ’lunar-stationary’ satellites?

3.2.3.3 Ex: Cosmic velocities

a. How long is the orbital period T of a 1 t satellite on a circular orbit at a height of
20 km around the Earth? How long is the orbital period T of the Earth around the
sun (the mass of the sun is 3.334×105 times larger than that of the Earth)? At what
distance from Earth is the orbit of a satellite geostationary?
b. Calculate the escape velocity from Earth (or cosmic speed) for a person weighing
75 kg.

3.2.3.4 Ex: Tschurjumow-Gerasimenko

The satellite Rosetta of the ESA (msat = 3000 kg) was placed on an orbit of the comet
Tschurjumow-Gerasimenko (mass mTG = 3.14 · 1012 kg, diameter dTG = 4km).
a. For the satellite to orbit the comet once a terrestrial day, what is the required
height of the orbit?
b. What is the escape velocity from the comet’s surface?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary04.pdf
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3.3 Gravitational potential

For an arbitrary mass distribution ρ(r) the gravitational potential acting on a test
mass m can be calculated from,

V (r) = −γNm
∫
R3

ρ(r′)

|r− r′|
d3r′ . (3.9)

For a point-mass with mass M located at the origin, r′ = 0, we parametrize ρ(r′) =
Mδ3(r′), and recover Newton’s law,

V (r) = −γN
Mm

r
. (3.10)

The gravitational potential being conservative, trajectories of test masses can sim-
ply be derived by solving the equation of motion,

mr̈ = −∇V (r) = γNm

∫
R3

ρ(r′)
r− r′

|r− r′|3
d3r′ . (3.11)

If in practice analytic solution are beyond reach, numerical procedure are always
possible.

Example 19 (Gravitational potential in- and outside a homogeneous
sphere): In this example we will calculate the gravitational force that a particle
of mass m is subjected to when placed inside a homogeneous sphere of radius
R at a distance r from its center.
The potential exerted by a mass distribution with the density ρ(r′) on a particle
of mass m located at the position r is,

V (r) = −
∫
ρ(r′)

γNm

|r− r′|d
3r′ = −

∫
sphere

ρ0
γNm

|r− r′|r
′2 sin θ′dr′dθ′dϕ′ . (3.12)

Substituting,

ξ ≡ |r− r′| =
√
r2 + r′2 − 2rr′ cos θ′ (3.13)

dξ

dθ′
=
rr′ sin θ′

ξ
,

we obtain,

V (r) = −
∫
sphere

ρ0
γNmr

′

r
dξdr′dϕ′ =

2πρ0γNm

r

∫ R

0

∫ ξmax

ξmin

r′dξdr′ . (3.14)

The integration limits follow from the values adopted by ξ for θ = 0 resp. θ = π.
For r ≤ R we have that r′ is always greater than r. Hence, ξ = r′ − r, .., r′ + r.
For R ≤ r we have that r′ is always smaller than r. Hence, ξ = r − r′, .., r′ + r.

V (r) = −2πρ0γNm

r

{∫ R

r
2rr′dr′ +

∫ r

0
2r′2dr′∫ R

0
2r′2dr′

for

{
r ≤ R

R ≤ r
. (3.15)

With the sphere’s mass,

M =
4πρ0R

3

3
, (3.16)
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the potential becomes,

V (r) = −2πρ0γNm

(
R2 − 1

3
r2
)
θ(R− r)− 2πρ0γNm

2R3

3r
θ(r −R) (3.17)

= −γNMm

(
3

2R
− r2

2R3

)
θ(R− r)− γNMm

1

r
θ(r −R) .

The force can be calculated using the gradient in spherical coordinates,

F = −∇V (r) = −êr
∂

∂r
V (r) (3.18)

= −êrγNMm
r

R3
θ(R− r)− êrγNMm

1

r2
θ(r −R) .

0 1 2

r/R

-10

-5

0

V
(r
)/
m

×107
(a)
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r/R
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F
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)/
m

(b)
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r/R

-2

0

2

4

G
(r
)/
m

×10−6

(c)

Figure 3.2: (code) Gravity in- and outside of Earth. (a) Gravitational potential, (b) gravi-

tational force, and (c) radial (blue) and transverse (red) gravity gradient.

The above example shows that

1. outside a spherical mass distribution the gravitational potential can simply be
replaced by that of a point mass sitting at the center of the mass distribution;

2. the superposition principle,

Vρ1+ρ2(r) = Vρ1(r) + Vρ2(r) , (3.19)

allows us to described the impact of mass cavities via simple subtraction

In classical mechanics we often describe gravity as a homogenous force field, which
can be derived from a potential scaling linearly with the height above normal ground,

V (h) = mgh . (3.20)

Obviously, this is approximation obtained by linearizing the gravitational potential
on the Earth’s surface. From Newton’s law,

V (r) = −γNMm

r
, (3.21)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_EarthGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_EarthGravity.m
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using the Taylor expansion:

V (r+h) = eh·∇rV (r) =

∞∑
ν=0

(h · ∇r)
ν

ν!
V (r) = V (r)+(h·∇r)V (r)+

1

2
(h·∇r)(h·∇r)V (r) ,

(3.22)
we get,

V (r+ h) ≃ V (r) + h
γNMm

r2
= V (r) + hgm . (3.23)

In Exc. 3.3.5.1 we derive an expression generalizing Eq. (3.17) to arbitrary isotropic
gravitational potentials. In Excs. 3.3.5.2, 3.3.5.3, 3.3.5.4, and 3.3.5.5 we calculate the
potentials for other isotropic mass distributions. In Exc. 3.3.5.6 we use the super-
position principle to calculate the potential generated by a spherical cavity inside a
homogeneous sphere. In Excs. 3.3.5.7, 3.3.5.8, and 3.3.5.9 we calculate potentials gen-
erated by non-spherical density distributions. In Excs. 3.3.5.10, 3.3.5.11, and 3.3.5.12
we apply the results derived for the Earth’s inner gravitational potential to derive
possible trajectories through boreholes traversing the Earth.

3.3.1 Rotation and divergence of gravitational force fields

The rotation and divergence of gravitational force fields are,

∇2V (r) = ∇ · F(r) = −4πγNmρ(r) (3.24)

∇× F(r) = 0 .

The integral formulation of Eq. (3.24) reads,∮
∂V

F · dS = −4πγNMm , (3.25)

with M =
∮
∂V

ρ(r)d3r.
The interpretation of these expressions are:

• The Poisson equation relates the divergence of the force field directly to the
density distribution.

• The divergence is nothing else than the diagonal of gravity gradient defined in
Sec. 3.3.2.

• For being conservative, gravitational potentials are rotation-free.

• The integral over a closed surface is proportional to the enclosed mass.

The Lagrangian density for Newtonian gravity is,

L(r, t) = −ρ(r, t)− 1
8πγN

[∇V (r, t)]2 . (3.26)

Applying the Hamitonian principle to this Lagrangian one recovers the Poisson equa-
tion for gravity.
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3.3.2 Gravity gradients

The gravity gradient is a tensor defined as the second derivative of the potential,

Gkl(r) = Glk(r) =
∂gl(r)

∂xk
=

1

m

∂Fl(r)

∂xk
= − 1

m

∂

∂xk

∂V (r)

∂xl
. (3.27)

Inserting the potential (3.9) we obtain,

Gkl(r) = − 1

m

∂

∂xk

∂V (r)

∂xl
= γN

∫
R3

ρ(r′)
∂

∂xk

∂

∂xl

1

|r− r′|d
3r′ (3.28)

= γN

∫
R3

ρ(r′)

|r− r′|5

3(x− x′)2 − (r− r′)2 3(x− x′)(y − y′) 3(x− x′)(z − z′)

3(x− x′)(y − y′) 3(y − y′)2 − (r− r′)2 3(y − y′)(z − z′)

3(x− x′)(z − z′) 3(y − y′)(z − z′) 3(z − z′)2 − (r− r′)2

 d3r′

= γN

∫
R3

ρ(r′)

|r− r′|3Kkl(r− r′)d3r′ ,

defining the kernel,

Kkl(r− r′) ≡ 3(xk − x′k)(xl − x′l)− δkl(r− r′)2

|r− r′|2
. (3.29)

For example, for the gravitational potential generated by a point mass,

V (r) = γN
Mm

r
= γN

Mm√
x2 + y2 + z2

, (3.30)

we find,

Gkl(r) = − 1

m

∂

∂xk

∂V (r)

∂xl
=
γNM

r5

3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2

 (3.31)

=
γNM

r5
(3xkxl − r2δkl) .

Gravity gradients are often given in units of 1Eotvos = 10−9 s-2. In Exc. 3.3.5.13 we
calculate the gravity gradient tensor of Earth (modeled as an idealized sphere) at the
north-pole.

Example 20 (Gravitational curvature in- and outside a homogeneous
sphere): The gravitational potential an force in- and outside a homogeneous
sphere have been calculated in the example 19. Using the result we derive the
gravity gradient,

Gkl(r) = − 1

m

∂

∂xk

∂

∂xl
V (r) (3.32)

= −γNM
R3

1 0 0

0 1 0

0 0 1

 θ(R− r) +
γNM

r5

3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2

 θ(r −R)

= −γNM
R3

δklθ(R− r)− γNM

r3

(
δkl −

3xkxl
r2

)
θ(r −R) .
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The example 19 revealed that neither the potential nor the force are discontin-
uous at the sphere’s surface. In contrast, the radial component of the curvature
Gk=l(r = R) is discontinuous at the north pole, while the transverse components
Gk ̸=l(r = R) stay continuous, which is obviously due to the isotropic symmetry
of the potential. To see this better, let us move along the symmetry axis setting
r = rêz,

Gkl(rêz) = −γNM
R3

1 0 0

0 1 0

0 0 1

 θ(R− r)− γNM

r3

1 0 0

0 1 0

0 0 −2

 θ(r −R) .

(3.33)

Applying this results to Earth, be find inside Earth a constant gravity gradient

of −γNM&/R
3

&
= 1.54 · 10−6 s-2.

3.3.2.1 Gravimetry and gravity gradiometry

Gravity-gradiometers measure spatial variations of the gravitational acceleration. Be-
ing obtained as second derivatives of the gravitational potential, they are more sensi-
tive to local mass variations, as nearly homogeneous large scale contributions to the
acceleration are removed. For this reason, gravity-gradiometers need to be less accu-
rate, provided they are sensitive enough. In Exc. 3.3.5.14 we estimate the sensitivity
of modern gravimeters.

Example 21 (Gravitation in- and outside a massive shell): The calcula-
tions of examples 19 and 20 can be generalized for a homogenous massive shell
with density ρ1, inner radius Ri, and outer radius R0. In Exc. 3.3.5.2 we show
that the gravitational potential is,

V (r) = −2πρ1γNm
[
(R2

o −R2
i )θ(Ri − r) (3.34)

+

(
R2

o −
r2

3
− 2R3

o

3r

)
θ(r −Ri)θ(Ro − r) +

2(R3
o −R3

i )

3r
θ(r −Ro)

]
,

the gravitational force,

F(r = −∇V (r) = −êr
∂

∂r
V (r) (3.35)

= êr
4πρ1γNm

3

[(
−r + R3

o

r2

)
θ(r −Ri)θ(Ro − r)− R3

o −R3
i

r2
θ(r −Ro)

]
,

and the gravity gradient,

Gkl(r) = − 1

m

∂

∂xk

∂

∂xl
V (r) (3.36)

= −4πρ1γN
3

[(
δkl −

R3
i

r3

(
δkl −

3xkxl
r2

))
θ(r −Ri)θ(Ro − r)

+
R3

o −R3
i

r3

(
δkl −

3xkxl
r2

)
θ(r −Ro)

]
.

For Ri → 0 we recover the results of example 20. Particularly along the sym-
metry axis,

Gzz(r) = −4πρ1γN
3

[(
1 +

2R3
i

r3

)
θ(r −Ri)θ(Ro − r)− 2

R3
o −R3

i

r3
θ(r −Ro)

]
.

(3.37)
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3.3.3 Constants of motion

Trajectories can also be derive exploiting constants of motion. In Excs. 3.3.5.17 to
3.3.5.22 we calculate trajectories of bodies under the influence of gravity.

3.3.4 The virial law

The virial law states,

T = − 1
2

∑
i

Firi . (3.38)

For potentials of the form V (r) = αrk we have,

F = −∇V = −kαrk−1êr . (3.39)

Thus T and V related via,

T = − 1
2

∑
i

Firi =
k
2

∑
i

αrk−1
i êri · ri = k

2

∑
i

αrki = k
2V . (3.40)

In Exc. 3.3.5.23 we apply the virial law to a spring pendulum.

Example 22 (The virial law for the harmonic potential and for 1/r-
potentials): The special case k = 2 yields,

V (r) = αr2 ⇒ T = V , (3.41)

and corresponds to a harmonic oscillator with α = 1
2
mω2

0 .
The special case k = −1 yields,

V (r) =
α

r
⇒ T = −1

2
V , (3.42)

and corresponds to a Coulomb potential with α = q1q2
4πϵ0

, respectively a gravita-
tional potential with α = −γNMm.
In the case of the gravitational potential, for positive total energy, we get,

E = T + V > 0 T = − 1
2
V ⇒ E = 1

2
V > 0 ⇒Mm < 0 . (3.43)

Thus,

T =
1

2
mv2 = −1

2
V < 0 ⇒ m < 0 (3.44)

This leads to the demand for negative masses, which is not sensible. The virial

theorem can only apply to bound systems with E < 0.

3.3.5 Exercises

3.3.5.1 Ex: Arbitrary isotropic mass density distributions

a. Generalize the calculation of gravitational potentials and forces exhibited in exam-
ple 18 to arbitrary, but isotropic mass density distributions ρ(r′) = ρ(r′).
b. Study the case of a sharp edge, ρ(r′) ≡ ρ(r′)θ(R− r′).
c. Study the case of a homogeneous distribution, ρ(r′) ≡ ρ0θ(R − r′), for a sphere
with total mass M .
d. Study the case of a parabolic distribution, ρ(r′) ≡ ρ0

(
1− r′2

R2

)
θ(R − r′), for a

sphere with total mass M .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential01.pdf
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3.3.5.2 Ex: Gravitational potential of a spherical shell

Consider a spherical shell with an inner radius a and an outer radius b.
a. Calculate the gravitational potential inside the sphere, inside the shell material and
outside the sphere. (Help: Substitute the distance between the test particle m and
a point of the mass distribution and make a case distinction for the integration limits
for this distance variable.)
b. Calculate the force on a test particle.
c. Specify now for a massive sphere.
d. Specify for a very thin spherical shell.

3.3.5.3 Ex: Two concentric shells

Let us consider two concentric spherical shells of uniform density with masses M1

and M2. Calculate the force on a particle of mass m placed (a) inside the inner shell,
(b) outside the inner but inside the outer shell, and (c) outside the outer sphere.

 

 

 

 

 

 

Gravitação 

 
S. C. Zilio e V. S. Bagnato                                                         Mecânica, calor e ondas 
 
 

221 

Exercícios 

1- Calcule a força gravitacional que uma partícula de massa m fica sujeita 

quando colocada no interior da Terra, a uma distância r de seu centro.  

2- Consideremos duas cascas esféricas concêntricas de densidades uniformes 

de massa M1 e M2 como mostra a Fig. 11.3. Calcule a força sobre uma 

partícula de massa m colocada em a, b ou c. 

 

 

 

 

 

Fig. 11.3 

3- “Faz-se uma cavidade esférica numa esfera de chumbo de raio R tal que 

sua superfície toque a superfície externa da esfera maciça e passe pelo 

centro dessa. A massa primitiva da esfera de chumbo é M. Qual será a 

força que a esfera com a cavidade atrairá uma massa m a uma distância d 

do centro da esfera externa, de modo que a massa e o centro da esfera e da 

cavidade estejam alinhados?” (Questão retirada do exame “olímpico” da 

Universidade Estatal de Moscow (1946)). 

4- Mostrar que num túnel cavado através da Terra, ao longo de uma corda e 

não ao longo de um diâmetro, o movimento de um objeto será harmônico 

simples. 

5- Mostrar através de argumentos geométricos que uma partícula de massa m 

colocada no interior de uma casca esférica de densidade uniforme de 

massa fica sujeira a uma força nula, qualquer que seja a posição da 

partícula. O que aconteceria se a densidade superficial de massa não fosse 

constante?  

c 

M2 

M1 

a b 

Figure 3.3:

3.3.5.4 Ex: Gravity influenced by a thin surface layer

Model the Earth as a homogeneous sphere of mass density ρ0 isotropically covered
by a ∆R = 1m thick homogeneous layer with different density ρ1. How does the
gravitational potential depend on the ratio ρ1/ρ0?

3.3.5.5 Ex: Gravitational force inside a shell

Show through geometric arguments that a particle of mass m placed inside a spherical
shell of uniform mass density is subject to zero force, regardless of the position of the
particle. What would happen if the surface mass density was not constant?

3.3.5.6 Ex: Gravitational potential of a massive sphere with spherical
cavity

A spherical cavity is machined into in a lead sphere of radius R such that its surface
touches the outer surface of the massive sphere and passes through the its center.
The primitive mass of the lead sphere is M . What will be the force that the sphere
with the cavity will exert on a mass m at a distance z from the center of the outer
sphere, when the mass and the centers of the sphere and the cavity are aligned?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential06.pdf


3.3. GRAVITATIONAL POTENTIAL 99

Figure 3.4: Scheme of the problem.

3.3.5.7 Ex: Gravitational potential of a disk

Calculate the potential of a homogeneous thin disc with the surface density σ =
M/πR2 = ρdz along the axis of symmetry and the gravitational force it exerts on a
mass m.
Help: When integrating over the thickness a of the disk, use the relation:

∫ d

0
zf(z′)dz′ =

f(0)dz.

3.3.5.8 Ex: Gravitational force of a ring

Calculate the gravitational force of a ring of linear mass density λ =M/2πR = ρdRdz
on the symmetry axis.

Help: When integrating on the thickness of the ring, use the relations:
∫ dz

0
f(z′)dz′ =

f(0)dz and
∫ R+dR

R
f(r′)dr′ = f(R)dR.

3.3.5.9 Ex: Gravitational oscillation through a ring

Consider a heavy ring of mass M and radius R and a particle of mass m placed in
its center. What is the frequency for small amplitude oscillations in the direction
perpendicular to the plane of the ring?

3.3.5.10 Ex: Intraplanetary oscillation

A body of mass m is placed at a distance r0 from the center of a planet of mass M
and radius R.
a. Calculate the potential energy for 0 ≤ r ≤ ∞. Suppose that the mass density
of the planet is uniform and that the mass m can move within it through a tunnel.
Consider V (∞) = 0. Calculate the velocity as a function of r for r < R knowing that
V (r0) = 0.

3.3.5.11 Ex: Shortcut avoiding the Earth’s center

Show that in a tunnel dug through the Earth (not necessarily along a diameter) the
movement of an object will be harmonic.

3.3.5.12 Ex: Shortcut through the Earth

a. Two innovative companies make suggestions on how to get mail to New Zealand as
quickly as possible. One company suggests drilling a hole through the Earth, placing

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential12.pdf
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the mail in a fireproof box and allowing it to swing through the hole (smoothly)
through the center of the Earth so that it can be easily received by the recipient in
New Zealand. The other company wants to shoot the mail in a very low orbit of
only 1m above the surface of the Earth at the first cosmic speed (smoothly) to New
Zealand, where it should then be caught by a correspondingly soft pillow. Which of
these two suggestions (if they were feasible) would get the mail faster to destination?
b. Assume that the well was planned incorrectly and that the hole missed the center
of the earth by 100 km. What does the equation of motion look like?
Help: The mass distribution of the earth can be assumed to be homogeneous. Earth
rotation and friction effects are neglected.

m

Figure 3.5:

3.3.5.13 Ex: Gravity gradient caused by underground cavities

In this exercise we discuss whether gravity gradiometry can identify the presence of
underground cavities. We proceed in steps:
a. Assuming a homogeneous density distribution for Earth, calculate the gravity gra-
dient tensor at the north-pole.
b. How does the tensor change in the presence of a point-like mass M1 = 10 tons
located at a distance d = 1m in southern direction.
c. Describe the underground cavity by a spherical void centered at 1m below the
north-pole’s surface at having a radius such that the missing mass corresponds to
10 tons of Earth material.

3.3.5.14 Ex: Gravity gradients

a. Modern commercial gravity gradiometers can measure acceleration gradients on the
order of |∇a| ≈ 10−5 s-2. Compare with the gravity gradient on the Earth’s surface.
What is the smallest height difference detectable by a state of the art gradiometer?
b. Calculate the gravity gradient caused by a massive sphere of mass msphere = 10 t
at d = 1m distance?
c. The French company µQuans offers atomic quantum gravimeters with guaranteed
sensitivities of 50µGal /

√
Hz at a cycling frequency of 2 Hz. Assuming the Earth

as a homogeneous sphere. For how long must the signal be integrated to be able to
measure a 1 cm height variation over the Earth’s surface.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient02.pdf
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d. For how long must the signal be integrated to be able to measure a gravity variation
caused by a 10 t mass at 1m distance.

3.3.5.15 Ex: Acceleration of a mass subject to a circular motion in an
inhomogeneous force field

CommercialGravity Gradient Instruments (GGI) are based on accelerometers mounted
on the border of a disk of radius R rotating at a frequency ω. Let us suppose that the
disk’s rotation axis is the z-axis and that is located inside an inhomogeneous force
field (e.g. gravity) characterized by its gradient tensor (assumed to be constant over
time and over the length scale of R).
a. Calculate the time-dependent acceleration recorded by the accelerometer in radial
direction.
b. The voltage signal delivered by the accelerometer is now added to one delivered by
a second accelerometer sitting on the opposite side of the disk.
c. Finally, the signals are demodulated at 2ω and time-averaged over a period 2π/ω.

3.3.5.16 Ex: Angular momentum in spherical coordinates

a. Calculate the acceleration, the angular momentum, and its derivative in spherical
coordinates using the result of Exc. ??.
b. Set θ = π

2 in all expressions.
c. Derive the equation of motion for a central potential.

3.3.5.17 Ex: Scattering at a central force, angular momentum

Consider the scattering of a particle of mass M at an attractive central force field
F(r) = − α

r2 êr with α > 0. Far from the force center the velocity of the particle is
given by v∞. The asymptotic distance perpendicular to the velocity for very large
distances from the force center is called the impact parameter b.
a. Determine the relationship between the impact parameter b and the angular mo-
mentum L of the particle.
b. The path of the particle has the shape of a conic section, which in plane polar
coordinates can be parametrized by r = P/(1− ϵ cosϕ). Find ϵ and P as a function
of b, v∞, M and α. c. Find an expression for sin(θ/2). Here, θ is the scattering
angle between the asymptotic orbits of the particle, i.e. the paths of the incoming and
outgoing particles for large distances from the force center.
d. How does θ for constant v∞ depend on the impact parameter b? Discuss the special
cases b = 0 and b→ ∞.

3.3.5.18 Ex: Gravitational force, trajectory

The trajectory of the Kepler problem can be derived from the integral expression:

φ(r) = φ0 +

∫ r

r0

l dr

r2
√

2m(E + α
r )−

l2

r2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory02.pdf


102 CHAPTER 3. GRAVITATION

Figure 3.6:

Here E is the total energy, α = γNmM and l = mr2φ̇. We also introduce the
quantities:

p =
l2

mα
and ε =

√
1 +

2El2

mα2
.

a. Convince yourself that, with the substitution ξ = (p/r− 1)/ε, the integral expres-
sion can be written in the form:

φ(r) = φ0 −
∫ 1

ε (
p
r−1)

1
ε (

p
r0

−1)

dξ√
1− ξ2

.

b. Show with the help of energy conservation that the minimum distance from the
force center is determined by rmin = p

1+ε for all values of E.
c. Show that the trajectories for φ0 = π and r = rmin are r(φ) = p

1−ε cosφ , where∫
dx/

√
1− x2 = arcsinx.

d. Confirm that for elliptical trajectories (0 ≤ ε < 1 and p = b2/a2 where a(b), the
major semi-axis follows Kepler’s 3rd law. Use the area theorem.

3.3.5.19 Ex: Central force, trajectory

Consider two masses m1 and m2 located at r1 and r2. There is an attractive force
between them of the amount F (r1, r2) = 2λ/|r1 − r2|3 (λ > 0).
a. Specify the angular momentum of the relative motion l and the energy conservation
as a function of r, p and the reduced mass µ, whereby we may designate by E > 0
the total energy of the system.
b. At the time t = 0 we let the relative distance of both particles be rmin, the relative
velocity in the direction of r be zero and φ(rmin) = 0. Determine the relationship
between rmin, E, l, λ and µ. Is it possible to eliminate l and λ from the energy
conservation law? Calculate the function r(t).
c. Express d

dφr(φ) = ṙ/φ̇ as a function of E, l, r and rmin and calculate the trajectory

r(φ).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory03.pdf
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3.3.5.20 Ex: Ballistic movement

Consider the movement of an intercontinental missile launched at an inclination of θ0,
as shown in the figure, with speed v0, in the indicated position. Calculate the body’s
trajectory.
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6- Considere o movimento de um míssel intercontinental, lançado segundo 

inclinação θ0 como mostrado na Fig. 11.4, com velocidade v0, na posição 

indicada. Calcule a trajetória do corpo.  

 

 

 

 

 

 

Fig. 11.4  

7- Três corpos idênticos de massa M estão localizados nos vértices de um 

triângulo eqüilátero de lado L. A que velocidade eles devem mover-se se 

todos giram sob a influência da gravidade mútua, em uma órbita circular 

que circunscreve o triângulo, mantido sempre eqüilátero?  

8- Considere um anel maciço de raio R e massa M. Colocamos uma partícula 

de massa m a uma distância d do plano do anel de modo que quando solto 

o corpo tem trajetória sobre a reta perpendicular ao plano do anel 

passando pelo centro do mesmo. Calcule o movimento do corpo de massa 

m (<<M). 

9- Um corpo de massa m é colocado a uma distância r0 do centro de um 

planeta de massa M e raio R. Calcule a velocidade como função de r. 

10- Considere duas massas m e 2m com atração gravitacional. Com que 

velocidade angular elas devem rodar tal que a distância d entre elas fique 

constante? 

11- Um corpo de massa m é colocado a uma distância r0 do centro de um 

planeta de massa M e raio R. Calcule a energia potencial para 0 ≤ r ≤ ∞. 

Suponha que a densidade de massa do planeta seja uniforme e que a massa 

R 
α0 

x 

θ0 
y v0 

Figure 3.7:

3.3.5.21 Ex: Rotation of three bodies

Three identical bodies of mass M are located at the vertices of an equilateral triangle
with border length L. How fast should they move, if they all rotate under the influence
of mutual gravity, on a circular orbit that circumscribes the triangle always kept
equilateral?

3.3.5.22 Ex: Rotation of two bodies

Consider two masses m and 2m with gravitational attraction. At what angular ve-
locity should they rotate so that the distance d between them is constant?

3.3.5.23 Ex: The virial law

Consider a mathematical spring pendulum with D = 100N/m and an attached mass
of m = 100 g. The average kinetic energy of the pendulum be T = 0.5 J. What is the
mean deflection x and the mean quadratic deflection x2?

3.4 Outlook on general relativity

The fundamental idea of general relativity is the equivalence of inert and heavy mass.
While special relativity follows from Lorentz invariance, general relativity follows from
Lorentz boost invariance, see also Secs. ?? and ??.

Example 23 (Relativistic correction to Newton’s law): .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_VirialGravi01.pdf
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3.4.1 Gravitational red-shift

The gravitational red-shift ∆ω suffered by a clock of mass m can be estimated from
(see Sec.??),

ℏ∆ω = m∆V (r)
m , (3.45)

where ∆V (r) is the gravitational potential difference with and without a nearby
heavy mass. The mass of the clock is a measure of its pace: m = E/c2 = ℏω/c2. For
instance, on the surface of Earth we get,

ℏ∆ω = mg∆z =
E

c2
g∆z =

ℏω
c2
g∆z . (3.46)

Hence,
∆ω

ω
=

g

c2
∆z ≃ ∆z · 10−16 m-1 . (3.47)

3.4.2 Exercises

3.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2013), Curso de F́ısica Básica: Mecânica - vol 1
[ISBN]

http://isbnsearch.org/isbn/978-8-521-20801-1


Chapter 4

Appendices to ’Classical
Mechanics’

4.1 Constants and units in classical physics

4.1.1 Constants

4.1.1.1 Mathematical constants

π constant π = 3.1415..

Euler constant e = 2.71828..

4.1.1.2 Constants of the SI unit system

These numbers of the special adjustment CODATA 2019 were proposed as exact
values.

frequency of the hyperfine transition of Cs ν = 9 192 631 770Hz

velocity of light c = 299 792 458m/s

Planck’s constant h = 6.626 070 15 · 10−34 Js

electronic charge e = 1.602 176 634× 10−19 C

Boltzmann’s constant kB = 1.380 649× 10−23 J/K

Avogadro’s constant NA = 6.022 14076× 1023 mol-1

Luminous efficiency Kcd = 683 lm

105
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4.1.1.3 Derived constants

fine-structure constant α = e2/4πε0ℏc ≈ 1/137

vacuum permittivity ε0 = 1/µ0c
2 = 8.8542× 10−12 As/Vm

vacuum permeability µ0 = 10−7 Vs/Am

Faraday’s constant F = 96485.309C/mol

atomic mass unit uA = 1/NA × 1g/mol = 1.6605402× 10−27 kg

gas constant R = NAkB = 8.314510L/mol K

Bohr radius aB = α/4πR∞ = 0.529× 10−10 m

Bohr magneton µB = eℏ/2me = 9.27× 10−24 J/T

classical electron radius re = α2aB

Rydberg constant R∞ = mecα
2/2h = 13.7 eV

Compton wavelength λC = h/mec

Thomson cross section σe = (8π/3)r2e

gravitational constant γ = 6.67259× 10−11 m3kg-1s-2

4.1.1.4 Particle constants

electron mass me = 9.1096× 10−12 kg

g-factor of the electron g = 2.002 319 304 386

muon mass mµ = 105.658389MeV

proton mass mp = 938.27231MeV

g-factor of the proton g = 5.5858

neutron mass mp = 939.56563MeV

g-factor of the neutron g = −3.8261

deuteron mass md = 1875.61339MeV
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4.1.1.5 Astronomical constants

earth mass m& = 5.9736× 1024 kg

earth radius R& = 6370 km

earth gravity g& = 9.80665m/s

lunar mass m$ = 7.348× 1022 kg

lunar radius R$ = 1740 km

lunar gravity g$ = 1.62m/s

distance earth-moon dES = 384000 km

sun massa m. = 1.99× 1030 kg

sun radius R. = 695300 km

sun gravity g. = 273m/s

distance earth-sun dES = 1.496× 108 km

sinodic day dsyn = 24h

sideric day dsyn = 23.9345 h = 23 h 56min 4 s

sinodic month monsyn = 29.530590 d

sideric month monsid = 27.321666 d

sideric year asyn = 365.256365 h = 365 d 6 h 9min 10 s

lunar day dlunar = 24.8412 h

1
monsid

= 1
asid

+ 1
monsyn

1
dsid

= 1
asid

+ 1
dsyn

1
dsid

= 1
monsid

+ 1
dlunar

4.1.2 Units

charge Q basic unit

current I A=C/s

voltage U V=N/As

polarizability αpol Asm2/V

susceptibility χ 1

dipolar moment 1 Debye = 10−27/2.998 Cm = 10−19/c Cm2/s = 39.36 eaB
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4.2 Quantities and formulas in classical mechanics

time t basic unit

position r basic unit

velocity v v = ṙ

acceleration a a = v̇

mass m basic unit

linear momentum p p = mv

force F F = ṗ = ma

kinetic energy Ekin Ekin = m
2 v

2

angle ϕ⃗ basic unit

angular velocity ω⃗ ω⃗ = ṙ

angular acceleration α⃗ α⃗ = ˙⃗ω

inertial moment (continuous density) I I =
∫
r2⊥dm =

∫
V
ρ(r)[r2 − (r · êω)]dV

inertial moment (discrete density) I I =
∑

imir
2
i

angular momentum L L = Iω⃗ = r× p

torque τ⃗ τ⃗ = L̇ = Iα⃗ = r× F

rotational energy Erot Erot =
m
2 ω

2r2

potential energy Epot Egrav
pot = mgh , Esprng

pot = k
2x

2

work W W =
∫ s2
s1

F · ds

power P P = Ẇ

4.2.1 Particular forces

gravitation Fgrav = mg

Hooke’s for elastic spring Fmola = −k∆x

friction Fat = −µN

Stokes’ friction Ffr = −γv

Newton’s friction Ffr = −γv2
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4.2.2 Inertial momentum

Steiner’s theorem
Iω2

= Iω1
+md2 ,

where d is the distance between parallel axes

theorem of perpendicular axes Iz = Ix + Iy para ρ(r) = δ(z)σ(x, y)

4.2.3 Inertial forces due to transitions to translated and ro-
tated systems

transformation to an accelerated frame FGal = −ma

centrifugal force Fcf = −mω⃗ × (ω⃗ × r)

Coriolis force FCor = −2mω⃗ × v

4.2.4 Conservation laws

energy conservation
∑

k E
(ini)
kin +

∑
k E

(ini)
pot =

∑
k E

(fin)
kin +

∑
k E

(fin)
pot

linear momentum conservation
∑

k p
(ini)
k =

∑
k p

(fin)
k

angular momentum conservation
∑

k L
(ini)
k =

∑
k L

(fin)
k

definition of the center-of-mass rcm ≡
∑

k mkrk∑
k mk

4.2.5 Rigid bodies, minimum required number of equations of
motion

1. estimate number of moving masses m1, m2, ...

2. identify possible movement (degree of freedom) for every mass

v1x, v2x, ...

v1y, v2y, ...

v1z, v2z, ...

ω1, ω2, ...

3. write down for every degree of freedom an equation of motion
mv̇kl =

∑
j Fj

Iω̇k =
∑

j τj

4.2.6 Gravitational laws

Newton’s law F(r) = − GMm
|R−r|2 êRr = −∇V (r)

gravitational potential V (r) = −
∫

Gm
|r−r′|2 ρ(r

′)dV ′
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4.2.7 Volume elements

cartesian coordinates dV = dxdydz

cylindrical coordinates dV = ρdρdϕdz

spherical coordinates dV = r2 sin θdrdθdϕ

4.2.8 Oscillations ma+ bv + kx = F0 cosωt

dissipative motion k = 0, F0 = 0 x(t) = Ae−γt, γ = b
2m

harmonic oscillation b = 0, F0 = 0 x(t) = A cos(ω0t+ δ), ω0 =
√

k
m

damped oscillation F0 = 0 x(t) = Ae−γt cos(ωt+ δ), ω =
√
ω2
0 − γ2

forced oscillation
x(t) = A cos(ωt+ δ) , A = F0√

m2(ω2
0−ω2)2+b2ω2

,

tan δ = bω
m(ω2

0−ω2)

4.3 Probability distributions

The binomial distribution is defined by,

B
(n)
k =

(
n

k

)
pk(1− p)n−k . (4.1)

The Poisson distribution is defined by,

Pk =
λk

k!
e−λ , (4.2)

for large n and small p, we get B
(n)
k ≃ Pk with λ = np.

4.3.1 Some useful formulae

If the limits of two functions tend to 0, limt→t0 f(t) = 0 = limt→t0 g(t) a rule called
l’Hôpital’s rule goes like,

lim
t→t0

f(t)

g(t)
= lim

t→t0

f ′(t)

g′(t)
. (4.3)



Bibliography
[1] A. E. Siegman, Lasers, 1986, ISBN.

[2] J. Weiner and P.-T. Ho, Light-matter interaction, fundamentals and applications,
John Wiley & Sons, Hokoken, New Jersey, 2003, ISBN.

111

https://isbnsearch.org/isbn/
https://isbnsearch.org/isbn/


Index
Talk: lecture on vibrations, 3
Talk: lecture on waves, 39

acoustic branch, 80
Airy function, 62
AM, 22
Ampère’s law, 44
amplitude, 5
amplitude modulation, 22
ansatz, 84
aperture, 69

beat signal, 60
binomial distribution, 110
Brillouin zone, 78

compressibility, 42
Copernicus

Nicolaus, 87
cosmic velocity, 89
coupled

oscillators, 33

de Broglie
Louis, 84

degree of freedom, 34
diffraction, 68
diffraction theory, 65
dispersion, 39

abnormal, 47
normal, 47

dispersion relation, 45
Doppler

Christian Andreas, 51
Doppler effect

sonic, 51

eigenvalue, 36
eigenvector, 36
Einstein

Albert, 54
electrical energy, 44
electromagnetic wave, 43
energy conservation, 6
equivalence principle, 103

escape velocity, 90

far field, 67
Faraday’s law, 44
FM, 22
Fourier theorem, 73
Fourier’s theorem, 46
Fraunhofer diffraction, 69
frequency, 4

angular, 4
frequency modulation, 22
Fresnel diffraction, 69
Fresnel integral, 66
Fresnel number, 69

Galilei
Galileo, 54

Galilei invariant, 52
Galilei transform, 53
general relativity, 103
gravitational potential, 92
gravitational red-shift, 104
gravity, 89
gravity gradient, 95
gravity gradient instrument, 101
Green’s function, 66
group velocity, 46

harmonic distortion, 74
harmonic wave, 45
Heisenberg’s uncertainty relation, 46
Helmholtz equation, 44, 54
Hooke’s law, 6
Huygens principle, 66

impulse response, 66

Kepler
Johannes, 87

kernel, 66
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